Suppr超能文献

人类和非人类灵长类动物视网膜中的细胞类型和细胞回路。

Cell types and cell circuits in human and non-human primate retina.

作者信息

Grünert Ulrike, Martin Paul R

机构信息

The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.

The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.

出版信息

Prog Retin Eye Res. 2020 Feb 5:100844. doi: 10.1016/j.preteyeres.2020.100844.

Abstract

This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.

摘要

本综述总结了我们目前对包括人类视网膜在内的灵长类动物视网膜的认识,重点关注双极细胞、无长突细胞和神经节细胞及其连接。我们撰写本文有两个主要动机。首先,用于研究视网膜疾病的非侵入性成像方法的最新进展意味着,更好地了解灵长类动物视网膜正成为基础科学和临床科学的一个重要目标。其次,转基因小鼠越来越多地被用作人类视网膜疾病的动物模型。因此,了解灵长类动物和啮齿动物的视网膜在多大程度上具有可比性很重要。我们首先比较灵长类动物和啮齿动物视网膜中的细胞群体,重点关注中央凹(尽管其尺寸较小)如何主导灵长类动物视网膜的神经格局。接下来,我们总结了关于灵长类动物视网膜中感受器后神经元群体已知和未知的情况。灵长类动物双极细胞和神经节细胞的清单现已接近完成,包括约12种双极细胞和至少17种神经节细胞。灵长类动物的神经节细胞在整个视网膜中的树突野大小存在明显差异,其形态与小鼠视网膜神经节细胞明显不同。与双极细胞和神经节细胞相比,无长突细胞表现出更高的形态多样性:它们可能包括40多种类型。许多无长突细胞类型在灵长类动物和小鼠之间似乎是保守的,但在任何灵长类动物或非灵长类动物视网膜中,只有少数类型的功能得到了解。无长突细胞似乎是猴子和小鼠视网膜研究的最后一个前沿领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验