Suppr超能文献

一种基于Wi-Fi指纹识别和行人航位推算的改进型行人跟踪方法。

An Improved Pedestrian Ttracking Method Based on Wi-Fi Fingerprinting and Pedestrian Dead Reckoning.

作者信息

Feng Bo, Tang Wei, Guo Guofa, Jia Xiaohong

机构信息

School of Electriacl and Control Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

出版信息

Sensors (Basel). 2020 Feb 5;20(3):853. doi: 10.3390/s20030853.

Abstract

Wi-Fi based positioning has great potential for use in indoor environments because Wi-Fi signals are near-ubiquitous in many indoor environments. With a Reference Fingerprint Map (RFM), fingerprint matching can be adopted for positioning. Much assisting information can be adopted for increasing the accuracy of Wi-Fi based positioning. One of the most adopted pieces of assisting information is the Pedestrian Dead Reckoning (PDR) information derived from inertial measurements. This is widely adopted because the inertial measurements can be acquired through a Commercial Off The Shelf (COTS) smartphone. To integrate the information of Wi-Fi fingerprinting and PDR information, many methods have adopted filters, such as Kalman filters and particle filters. A new methodology for integration of Wi-Fi fingerprinting and PDR is proposed using graph optimization in this paper. For the Wi-Fi based fingerprinting part, our method adopts the state-of-art hierarchical structure and the Penalized Logarithmic Gaussian Distance (PLGD) metric. In the integration part, a simple extended Kalman filter (EKF) is first used for integration of Wi-Fi fingerprinting and PDR results. Then, the tracking results are adopted as initial values for the optimization block, where Wi-Fi fingerprinting and PDR results are adopted to form an concentrated cost function (CCF). The CCF can be minimized with the aim of finding the optimal poses of the user with better tracking results. With both real-scenario experiments and simulations, we show that the proposed method performs better than classical Kalman filter based and particle filter based methods with both less average and maximum positioning error. Additionally, the proposed method is more robust to outliers in both Wi-Fi based and PDR based results, which is commonly seen in practical situations.

摘要

基于Wi-Fi的定位在室内环境中具有巨大的应用潜力,因为Wi-Fi信号在许多室内环境中几乎无处不在。借助参考指纹地图(RFM),可以采用指纹匹配进行定位。可以采用许多辅助信息来提高基于Wi-Fi定位的准确性。其中最常采用的辅助信息之一是从惯性测量中得出的行人航位推算(PDR)信息。这被广泛采用是因为惯性测量可以通过商用现货(COTS)智能手机获取。为了整合Wi-Fi指纹识别和PDR信息,许多方法采用了滤波器,如卡尔曼滤波器和粒子滤波器。本文提出了一种使用图优化来整合Wi-Fi指纹识别和PDR的新方法。对于基于Wi-Fi的指纹识别部分,我们的方法采用了最先进的层次结构和惩罚对数高斯距离(PLGD)度量。在整合部分,首先使用一个简单的扩展卡尔曼滤波器(EKF)来整合Wi-Fi指纹识别和PDR结果。然后,将跟踪结果用作优化模块的初始值,在该模块中,采用Wi-Fi指纹识别和PDR结果来形成一个集中成本函数(CCF)。可以通过最小化CCF来找到用户的最佳姿态,从而获得更好的跟踪结果。通过实际场景实验和模拟,我们表明,所提出的方法在平均定位误差和最大定位误差方面均优于基于经典卡尔曼滤波器和粒子滤波器的方法。此外,所提出的方法对基于Wi-Fi和基于PDR的结果中的异常值更具鲁棒性,这在实际情况中很常见。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf15/7039223/742967c116bd/sensors-20-00853-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验