Tian Zengshan, Jin Yue, Zhou Mu, Wu Zipeng, Li Ze
Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Sensors (Basel). 2016 Dec 10;16(12):2100. doi: 10.3390/s16122100.
With the wide deployment of Wi-Fi networks, Wi-Fi based indoor localization systems that are deployed without any special hardware have caught significant attention and have become a currently practical technology. At the same time, the Magnetic, Angular Rate, and Gravity (MARG) sensors installed in commercial mobile devices can achieve highly-accurate localization in short time. Based on this, we design a novel indoor localization system by using built-in MARG sensors and a Wi-Fi module. The innovative contributions of this paper include the enhanced Pedestrian Dead Reckoning (PDR) and Wi-Fi localization approaches, and an Extended Kalman Particle Filter (EKPF) based fusion algorithm. A new Wi-Fi/MARG indoor localization system, including an Android based mobile client, a Web page for remote control, and a location server, is developed for real-time indoor pedestrian localization. The extensive experimental results show that the proposed system is featured with better localization performance, with the average error 0.85 m, than the one achieved by using the Wi-Fi module or MARG sensors solely.
随着Wi-Fi网络的广泛部署,无需任何特殊硬件即可部署的基于Wi-Fi的室内定位系统引起了广泛关注,并已成为当前一项实用技术。与此同时,商业移动设备中安装的磁、角速率和重力(MARG)传感器能够在短时间内实现高精度定位。基于此,我们利用内置的MARG传感器和Wi-Fi模块设计了一种新颖的室内定位系统。本文的创新贡献包括增强的行人航位推算(PDR)和Wi-Fi定位方法,以及基于扩展卡尔曼粒子滤波器(EKPF)的融合算法。为实现实时室内行人定位,开发了一种新的Wi-Fi/MARG室内定位系统,包括一个基于安卓的移动客户端、一个用于远程控制的网页和一个位置服务器。大量实验结果表明,与仅使用Wi-Fi模块或MARG传感器所实现的系统相比,所提出的系统具有更好的定位性能,平均误差为0.85米。