Laboratory of Catalytic Reactor Engineering applied to Chemical and Biological Systems (LCRE). Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Itzapalapa, 09340, Ciudad de Mexico, Mexico.
Departamento de Bioprocesos, UPIBI-Instituto Politécnico Nacional, Ticomán, 07340, Ciudad de Mexico, Mexico.
Environ Sci Pollut Res Int. 2020 Jun;27(18):22184-22194. doi: 10.1007/s11356-020-07883-5. Epub 2020 Feb 7.
The carbamazepine (CBZ) abatement is herein evaluated using catalytic ozonation at different NiO concentrations as catalyst: 100, 300, and 500 mg L, revealing its total destruction after 5 min of reaction either by conventional or catalytic ozonation. The NiO incorporation in the reactor does not increase the destruction rate, but the catalyst presence enhances the partial mineralization of the contaminant by conversion into oxalic and formic acids and the removal of total organic carbon (TOC) associated with the formation of oxidant species such as hydroxyl radical. Evidence for this behavior is the accumulation rate of the above acids which rise proportionally to the NiO concentration. The highest NiO concentration (500 mg L) reached a maximum TOC removal of 79.2%, which exceeds by 50% the outcome of the conventional treatment. The accumulation-decomposition profiles of oxalic and formic acids suggest the occurrence of simultaneous reaction mechanisms (hydroxyl radicals and complex formations) on the catalyst during CBZ ozonation. According to XPS analysis, the presence of nitrogen species in the NiO-ozonated was attributable to byproducts of CBZ decomposition. The toxicity bioassay based on Lactuca sativa seeds demonstrate that ozonated samples attained similar plant germination than the reference substance (water) after 120 min of treatment. This result is comparable with or without the catalyst presence, indicating the formation of non-toxic accumulated byproducts at the end of the ozonation reaction.
采用不同浓度的 NiO(100、300 和 500mg/L)作为催化剂进行催化臭氧化,评估了卡马西平(CBZ)的去除情况,结果表明,无论是常规臭氧化还是催化臭氧化,在 5min 的反应后均可将其完全破坏。NiO 的加入并没有增加污染物的破坏速率,但催化剂的存在通过将污染物转化为草酸和甲酸,以及通过形成氧化物种(如羟基自由基)来提高污染物的部分矿化程度和去除总有机碳(TOC)。这种行为的证据是上述酸的积累速率与 NiO 浓度成正比。最高浓度的 NiO(500mg/L)达到了 79.2%的最大 TOC 去除率,比常规处理的结果高出 50%。草酸和甲酸的积累-分解曲线表明,在 CBZ 臭氧化过程中,催化剂上同时发生了羟基自由基和络合形成等反应机制。根据 XPS 分析,NiO-臭氧化中氮物种的存在归因于 CBZ 分解的副产物。基于莴苣种子的毒性生物测定表明,臭氧化样品在 120min 的处理后,其植物发芽率与参比物质(水)相似。这一结果与催化剂的存在与否相当,表明在臭氧化反应结束时形成了非毒性的积累性副产物。