Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
Noble Research Institute, LLC., Ardmore, OK, 73401, USA.
Plant J. 2020 Apr;102(2):207-221. doi: 10.1111/tpj.14714. Epub 2020 Mar 17.
Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G-proteins comprised of Gα, Gβ, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G-proteins comprised of one canonical and three extra-large Gα, one Gβ and three Gγ subunits exists. Because the Gβ and Gγ proteins form obligate dimers, the phenotypes of plants lacking the sole Gβ or all Gγ genes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gβγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gβ remain unexplored. To evaluate such flexible, signal-dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations of Gα and Gβ genes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal-dependent interactions between the Gα and Gβ proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G-protein networks provides for the adaptability needed to survive under continuously changing environments.
植物作为固着生物,同时整合来自各种内源性和外源性信号的信息,以优化生长和发育。这就需要植物中的信号网络具有高度的动态性和灵活性。这样的网络之一涉及异三聚体 G 蛋白,由 Gα、Gβ 和 Gγ 亚基组成,影响生长、发育和应激反应途径的许多方面。在拟南芥等植物中,存在相对简单的 G 蛋白库,由一个典型的和三个特大 Gα、一个 Gβ 和三个 Gγ 亚基组成。由于 Gβ 和 Gγ 蛋白形成必需的二聚体,因此缺乏唯一 Gβ 或所有 Gγ 基因的植物表型相似,这是预期的。然而,Gα 蛋白可以以单体形式存在,也可以与 Gβγ 形成复合物,并且不同 Gα 蛋白与唯一 Gβ 的组合遗传和生理相互作用的细节仍未被探索。为了评估这种灵活的、依赖信号的相互作用及其对引发特定反应的贡献,我们生成了缺乏特定 Gα 和 Gβ 基因组合的拟南芥突变体,进行了广泛的表型分析,并在亚基使用和相互作用特异性的背景下评估了结果。我们的数据表明,存在多种机制模式,在某些情况下还存在复杂的上位关系,这取决于 Gα 和 Gβ 蛋白之间的信号依赖性相互作用。这表明,尽管它们的数量有限,但植物 G 蛋白网络的固有灵活性为在不断变化的环境中生存提供了所需的适应性。