Suppr超能文献

多维能量景观上的空间变化胶体相行为。

Spatially varying colloidal phase behavior on multi-dimensional energy landscapes.

作者信息

Zhang Jianli, Zhang Yuanxing, Bevan Michael A

机构信息

Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

J Chem Phys. 2020 Feb 7;152(5):054905. doi: 10.1063/1.5142609.

Abstract

A method is reported to determine equilibrium concentration profiles and local phase behavior of colloids on multi-dimensional energy landscapes. A general expression is derived based on local particle concentration and osmotic pressure differences that are balanced by forces on colloids due to energy landscape gradients. This analysis is applied to colloidal particles in high frequency AC electric fields within octupolar electrodes, where the energy landscape can be shaped in two dimensions. These results are also directly applicable to any particles having induced dipoles in spatially non-uniform electromagnetic fields. Predictions based on modeling colloids with an effective hard disk equation of state indicate inhomogeneous solid and fluid states coexisting on different shaped energy landscapes including multiple minima. Model predictions show excellent agreement with time-averaged Brownian dynamic simulations at equilibrium. Findings demonstrate a general approach to understand colloidal phase behavior on energy landscapes due to external fields, which could enable control of colloidal microstructures on morphing energy landscapes and the inverse design of fields to assemble hierarchically structured colloidal materials.

摘要

本文报道了一种确定胶体在多维能量景观上的平衡浓度分布和局部相行为的方法。基于局部粒子浓度和渗透压差异推导出一个通用表达式,这些差异由能量景观梯度作用于胶体的力来平衡。该分析应用于八极电极内高频交流电场中的胶体粒子,其中能量景观可在二维空间中形成。这些结果也直接适用于在空间非均匀电磁场中具有感应偶极子的任何粒子。基于用有效硬球状态方程对胶体进行建模的预测表明,在包括多个极小值的不同形状能量景观上,不均匀的固态和流体态共存。模型预测与平衡时的时间平均布朗动力学模拟结果显示出极好的一致性。研究结果展示了一种理解由于外部场导致的胶体在能量景观上的相行为的通用方法,这可能有助于控制在变化的能量景观上的胶体微观结构以及逆向设计用于组装分层结构胶体材料的场。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验