Suppr超能文献

Rotational-permutational dual-pairing and long-lived spin order.

作者信息

Bengs C

机构信息

School of Chemistry, University of Southampton, University Road SO17 1BJ, United Kingdom.

出版信息

J Chem Phys. 2020 Feb 7;152(5):054106. doi: 10.1063/1.5140186.

Abstract

Quantum systems in contact with a thermal environment experience coherent and incoherent dynamics. These drive the system back toward thermal equilibrium after an initial perturbation. The relaxation process involves the reorganization of spin state populations and the decay of spin state coherences. In general, individual populations and coherences may exhibit different relaxation time constants. Particular spin configurations may exhibit exceptionally long relaxation time constants. Such spin configurations are known as long-lived spin order. The existence of long-lived spin order is a direct consequence of the symmetries of the system. For nuclear spin systems, rotational and permutational symmetries are of fundamental importance. Based on the Schur-Weyl duality theorem, we describe a theoretical framework for the study of rotational and permutational dual-symmetries in the context of long-lived spin order. Making use of the proposed formalism, we derive refined bounds on the number on long-lived spin populations and coherences for systems exhibiting rotational-permutational dual-symmetries.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验