Suppr超能文献

涂覆在中空介孔TiO纳米球上的具有增强光催化活性的1T-和2H-混合相MoS纳米片。

1T- and 2H-mixed phase MoS nanosheets coated on hollow mesoporous TiO nanospheres with enhanced photocatalytic activity.

作者信息

Zhao Haixin, Cui Shu, Li Guodong, Li Nan, Li Xiaotian

机构信息

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, China.

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

出版信息

J Colloid Interface Sci. 2020 May 1;567:10-17. doi: 10.1016/j.jcis.2020.01.100. Epub 2020 Jan 28.

Abstract

Recently, photocatalysts with a hollow mesoporous structure have drawn increasing interest owing to their extensive application in environmental protection. Herein, we prepared hollow mesoporous TiO nanospheres decorated with few layer 1T- and 2H- mixed phase MoS nanosheets via a template-based method and a hydrothermal reaction. The as-synthesized samples are of hollow mesoporous structure and high specific surface area, providing abundant mass transport and active sites for photocatalytic reaction. 1T-MoS in the mixed phase MoS mainly play the role as a bridge that transfers photoexcited electrons. Besides, the heterojunction between MoS and TiO can also efficiently restrain the recombination of photogenerated charge carriers in photocatalysts. As a consequence, under UV-vis light irradiation, the hollow porous TiO/MoS presents a remarkable photocatalytic activity in rhodaming B degradation. Scavenger studies demonstrate that the primary active species in photocatalytic process are hydroxyl radicals. Moreover, a possible photocatalytic reaction mechanism has also been put forward.

摘要

近年来,具有中空介孔结构的光催化剂因其在环境保护中的广泛应用而受到越来越多的关注。在此,我们通过基于模板的方法和水热反应制备了由几层1T-和2H-混合相MoS纳米片修饰的中空介孔TiO纳米球。所合成的样品具有中空介孔结构和高比表面积,为光催化反应提供了丰富的传质和活性位点。混合相MoS中的1T-MoS主要起到转移光激发电子的桥梁作用。此外,MoS与TiO之间的异质结还能有效抑制光催化剂中光生载流子的复合。因此,在紫外-可见光照射下,中空多孔TiO/MoS在罗丹明B降解中表现出显著的光催化活性。清除剂研究表明,光催化过程中的主要活性物种是羟基自由基。此外,还提出了一种可能的光催化反应机理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验