Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
J Colloid Interface Sci. 2020 May 1;567:65-74. doi: 10.1016/j.jcis.2020.01.122. Epub 2020 Feb 1.
The main issues regarding the practical application of microbial fuel cells (MFCs) are the poor activity and tolerance of oxygen reduction reaction (ORR) catalysts in wastewater. In this study, Auricularia chelated with Co, Fe and S ions is used as a nitrogen (N)-enriched carbon source to prepare N-doped bimetallic sulfide (CoFeS)-embedded carbon spheres (CoFeS/NSC) using a hydrothermal method. The effects of various temperatures (800-950 °C) on the structure and catalytic activity of CoFeS/NSC catalysts are investigated. The MFC with a CoFeS/NSC (900 °C) cathode obtained the maximum power density of 1.002 W m, which is higher than that of Pt/C (0.88 W m). After 1440 h of operation, the power density of the CoFeS/NSC (900 °C) cathode only declined by 5.49%, indicating that the CoFeS activity, charge transfer and O transport were slightly influenced by the attached microbes and poisonous substances in the wastewater. The electrochemical results indicate that CoFeS/NSC (900 °C) mainly proceeds by a 4e ORR pathway, indicating that CoFeS (Co and Fe) wrapped in NSCs (carbon spheres) can trigger synergistic effects to provide more active sites and high electrical conductivity to achieve the rapid kinetics required for the ORR. Moreover, the porous structures of the NSCs (220.97 m g) with incorporated pyridinic N, pyrrolic N and graphitic N can provide abundant available channels for O and OH transport to ensure the preferential accessibility of the reactant molecules to active sites. This indicates that Auricularia-derived CoFeS/NSC catalysts have great potential as alternatives for precious metal-based catalysts in neutral electrolyte MFCs.
用于微生物燃料电池 (MFC) 的实际应用的主要问题是废水中氧气还原反应 (ORR) 催化剂的活性和耐受性差。在这项研究中,使用与 Co、Fe 和 S 离子螯合的银耳作为富氮碳源,通过水热法制备氮掺杂双金属硫化物 (CoFeS)-嵌入碳球 (CoFeS/NSC)。研究了不同温度 (800-950°C) 对 CoFeS/NSC 催化剂结构和催化活性的影响。具有 CoFeS/NSC(900°C) 阴极的 MFC 获得了 1.002 W m 的最大功率密度,高于 Pt/C(0.88 W m)。在运行 1440 小时后,CoFeS/NSC(900°C) 阴极的功率密度仅下降了 5.49%,表明附着的微生物和废水中的有毒物质对 CoFeS 的活性、电荷转移和 O 传输的影响很小。电化学结果表明,CoFeS/NSC(900°C) 主要通过 4e ORR 途径进行,表明包裹在 NSCs(碳球)中的 CoFeS(Co 和 Fe)可以引发协同效应,提供更多的活性位点和高导电性,以实现 ORR 所需的快速动力学。此外,具有掺入的吡啶 N、吡咯 N 和石墨 N 的 NSCs(220.97 m g)的多孔结构可以为 O 和 OH 传输提供丰富的可用通道,以确保反应物分子优先可及的活性位点。这表明银耳衍生的 CoFeS/NSC 催化剂作为贵金属基催化剂在中性电解质 MFC 中的替代品具有巨大潜力。