Suppr超能文献

以钴和氮共掺杂有序介孔碳作为阴极催化剂,提高空气阴极微生物燃料电池处理废水的氧还原反应。

Enhancing oxygen reduction reaction in air-cathode microbial fuel cells treating wastewater with cobalt and nitrogen co-doped ordered mesoporous carbon as cathode catalysts.

机构信息

Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.

Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.

出版信息

Environ Res. 2020 Dec;191:110195. doi: 10.1016/j.envres.2020.110195. Epub 2020 Sep 11.

Abstract

The sluggish oxygen reduction reaction (ORR) on the cathode severely limits the energy conversion efficiency of microbial fuel cells (MFCs). In this study, cobalt and nitrogen co-doped ordered mesoporous carbon (Co-N-OMC) was prepared by heat-treating a mixture of cobalt nitrate, melamine and ordered mesoporous carbon (OMC). The addition of cobalt nitrate remarkably improved the ORR reactivity, compared to the nitrogen-doped OMC catalyst. By optimizing the dosage of cobalt nitrate (x = 0.6, 0.8 and 1.0 g), the Co-N-OMC catalyst displayed excellent ORR catalytic performances in neutral media with the onset potential of 0.79 V (vs. RHE), half-wave potential of 0.59 V and limiting current density of 5.43 mA/cm, which was comparable to the commercial Pt/C catalyst (0.86 V, 0.60 V and 4.76 mA/cm). The high activity of Co-N-OMC catalyst was attributed to the high active surface area, higher total nitrogen amount, and higher relative distribution of graphitic nitrogen and pyrrolic nitrogen species. Furthermore, single chamber microbial fuel cell (SCMFC) with Co-N-OMC cathode exhibited the highest power density of 389 ± 24 mW/m, chemical oxygen demand (COD) removal of 81.1 ± 2.2% and coulombic efficiency (CE) of 17.2 ± 2.5%. On the other hand, in the Co-N-OMC catalyst, increasing the cobalt dosage from 0.8 to 1.0 g resulted in more oxidized-N species, and the reduced power generation in SCMFC (360 ± 8 mW/m). The power generated by these catalysts and results of electrochemical evaluation were strongly correlated with the total nitrogen contents on the catalyst surface. This study demonstrated the feasibility of optimizing the dosage of metal to enhance wastewater treatment capacity.

摘要

阴极上缓慢的氧还原反应(ORR)严重限制了微生物燃料电池(MFC)的能量转换效率。在这项研究中,通过将硝酸钴、三聚氰胺和有序介孔碳(OMC)的混合物进行热处理,制备了钴和氮共掺杂有序介孔碳(Co-N-OMC)。与氮掺杂的 OMC 催化剂相比,添加硝酸钴显著提高了 ORR 反应性。通过优化硝酸钴的用量(x = 0.6、0.8 和 1.0 g),Co-N-OMC 催化剂在中性介质中表现出优异的 ORR 催化性能,起始电位为 0.79 V(相对于 RHE),半波电位为 0.59 V,极限电流密度为 5.43 mA/cm,可与商业 Pt/C 催化剂(0.86 V、0.60 V 和 4.76 mA/cm)相媲美。Co-N-OMC 催化剂的高活性归因于高比表面积、更高的总氮含量以及更高的石墨氮和吡咯氮物种的相对分布。此外,以 Co-N-OMC 为阴极的单室微生物燃料电池(SCMFC)表现出最高的功率密度为 389 ± 24 mW/m,化学需氧量(COD)去除率为 81.1 ± 2.2%,库仑效率(CE)为 17.2 ± 2.5%。另一方面,在 Co-N-OMC 催化剂中,增加硝酸钴的用量从 0.8 增加到 1.0 g 会导致更多的氧化-N 物种,以及 SCMFC 的发电减少(360 ± 8 mW/m)。这些催化剂产生的功率和电化学评估结果与催化剂表面的总氮含量密切相关。这项研究证明了优化金属用量以增强废水处理能力的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验