Fukaya Sho, Aoki Keita, Kobayashi Mio, Takemura Masaharu
Laboratory of Biology Education, Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, Tokyo, Japan.
Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo, Japan.
Front Microbiol. 2020 Jan 17;10:3014. doi: 10.3389/fmicb.2019.03014. eCollection 2019.
Tracking cell motility is a useful tool for the study of cell physiology and microbiology. Although phase-contrast microscopy is commonly used, the existence of optical artifacts called "halo" and "shade-off" have inhibited image analysis of moving cells. Here we show kinetic image analysis of motility using a newly developed computer program named "Phase-contrast-based Kinetic Analysis Algorithm for Amoebae (PKA3)," which revealed giant-virus-infected amoebae-specific motilities and aggregation profiles using time-lapse phase-contrast microscopic images. This program quantitatively detected the time-dependent, sequential changes in cellular number, size, shape, and direction and distance of cell motility. This method expands the potential of kinetic analysis of cultured cells using versatile phase-contrast images. Furthermore, this program could be a useful tool for investigating detailed kinetic mechanisms of cell motility, not only in virus-infected amoebae but also in other cells, including cancer cells, immune response cells, and neurons.
追踪细胞运动是研究细胞生理学和微生物学的一种有用工具。尽管相差显微镜术被广泛使用,但称为“光晕”和“阴影渐变”的光学伪像的存在阻碍了对移动细胞的图像分析。在此,我们展示了使用一种名为“基于相差的变形虫动力学分析算法(PKA3)”的新开发计算机程序对运动进行的动力学图像分析,该分析利用延时相差显微镜图像揭示了感染巨型病毒的变形虫特有的运动和聚集模式。该程序定量检测了细胞数量、大小、形状以及细胞运动方向和距离随时间的连续变化。这种方法扩展了使用通用相差图像对培养细胞进行动力学分析的潜力。此外,该程序不仅对于研究病毒感染的变形虫,而且对于研究包括癌细胞、免疫反应细胞和神经元在内的其他细胞的细胞运动详细动力学机制可能都是一种有用的工具。