Rodrigues Pedro, Antunes Michel, Raposo Carolina, Marques Pedro, Fonseca Fernando, Barreto Joao P
Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal.
Perceive 3D, Coimbra, Portugal.
Healthc Technol Lett. 2019 Dec 6;6(6):226-230. doi: 10.1049/htl.2019.0078. eCollection 2019 Dec.
Knee arthritis is a common joint disease that usually requires a total knee arthroplasty. There are multiple surgical variables that have a direct impact on the correct positioning of the implants, and an optimal combination of all these variables is the most challenging aspect of the procedure. Usually, preoperative planning using a computed tomography scan or magnetic resonance imaging helps the surgeon in deciding the most suitable resections to be made. This work is a proof of concept for a navigation system that supports the surgeon in following a preoperative plan. Existing solutions require costly sensors and special markers, fixed to the bones using additional incisions, which can interfere with the normal surgical flow. In contrast, the authors propose a computer-aided system that uses consumer RGB and depth cameras and do not require additional markers or tools to be tracked. They combine a deep learning approach for segmenting the bone surface with a recent registration algorithm for computing the pose of the navigation sensor with respect to the preoperative 3D model. Experimental validation using ex-vivo data shows that the method enables contactless pose estimation of the navigation sensor with the preoperative model, providing valuable information for guiding the surgeon during the medical procedure.
膝关节关节炎是一种常见的关节疾病,通常需要进行全膝关节置换术。有多个手术变量会直接影响植入物的正确定位,而所有这些变量的最佳组合是该手术最具挑战性的方面。通常,使用计算机断层扫描或磁共振成像进行术前规划有助于外科医生决定最合适的切除部位。这项工作是一个导航系统的概念验证,该系统支持外科医生遵循术前计划。现有的解决方案需要昂贵的传感器和特殊标记,通过额外的切口固定在骨头上,这可能会干扰正常的手术流程。相比之下,作者提出了一种计算机辅助系统,该系统使用消费级RGB和深度相机,不需要额外的标记或工具进行跟踪。他们将用于分割骨表面的深度学习方法与用于计算导航传感器相对于术前三维模型的位姿的最新配准算法相结合。使用离体数据进行的实验验证表明,该方法能够实现导航传感器与术前模型的非接触式位姿估计,为手术过程中指导外科医生提供有价值的信息。