BIBA-Bremer Institut für Produktion und Logistik GmbH, University of Bremen, Hochschulring 20, 28359 Bremen, Germany.
University of Bremen, Faculty of Production Engineering, Badgasteiner Straße 1, 28359 Bremen, Germany.
Sensors (Basel). 2020 Nov 23;20(22):6703. doi: 10.3390/s20226703.
Tribological experiments (i.e., characterizing the friction and wear behavior of materials) are crucial for determining their potential areas of application. Automating such tests could hence help speed up the development of novel materials and coatings. Here, we utilize convolutional neural networks (CNNs) to automate a common experimental setup whereby an endoscopic camera was used to measure the contact area between a rubber sample and a spherical counterpart. Instead of manually determining the contact area, our approach utilizes a U-Net-like CNN architecture to automate this task, creating a much more efficient and versatile experimental setup. Using a 5× random permutation cross validation as well as additional sanity checks, we show that we approached human-level performance. To ensure a flexible and mobile setup, we implemented the method on an NVIDIA Jetson AGX Xavier development kit where we achieved ~18 frames per second by employing mixed-precision training.
摩擦学实验(即表征材料的摩擦磨损行为)对于确定其潜在的应用领域至关重要。因此,自动化此类测试可以帮助加快新型材料和涂层的开发。在这里,我们利用卷积神经网络(CNN)来自动化一种常见的实验设置,其中使用内窥镜相机测量橡胶样品和球形对应物之间的接触面积。我们的方法不是手动确定接触面积,而是利用类似于 U-Net 的 CNN 架构来自动完成此任务,从而创建一个更高效、更通用的实验设置。我们使用 5×随机排列交叉验证以及其他合理性检查,表明我们已经达到了人类水平的性能。为了确保灵活且移动的设置,我们在 NVIDIA Jetson AGX Xavier 开发套件上实现了该方法,通过采用混合精度训练,我们实现了约 18 帧/秒的速度。