Suppr超能文献

同源 G 蛋白偶联受体增强配体分子生物活性的建模和解释。

Homologous G Protein-Coupled Receptors Boost the Modeling and Interpretation of Bioactivities of Ligand Molecules.

机构信息

School of Geographic and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

出版信息

J Chem Inf Model. 2020 Mar 23;60(3):1865-1875. doi: 10.1021/acs.jcim.9b01000. Epub 2020 Feb 18.

Abstract

G protein-coupled receptors (GPCRs) are one of the most important drug targets, accounting for ∼34% of drugs on the market. For drug discovery, accurate modeling and explanation of bioactivities of ligands is critical for the screening and optimization of hit compounds. Homologous GPCRs are more likely to interact with chemically similar ligands, and they tend to share common binding modes with ligand molecules. The inclusion of homologous GPCRs in learning bioactivities of ligands potentially enhances the accuracy and interpretability of models due to utilizing increased training sample size and the existence of common ligand substructures that control bioactivities. Accurate modeling and interpretation of bioactivities of ligands by combining homologous GPCRs can be formulated as multitask learning with joint feature learning problem and naturally matched with the group lasso learning algorithm. Thus, we proposed a multitask regression learning with group lasso (MTR-GL) implemented by -norm regularization to model bioactivities of ligand molecules and then tested the algorithm on a series of thirty-five representative GPCRs datasets that cover nine subfamilies of human GPCRs. The results show that MTR-GL is overall superior to single-task learning methods and classic multitask learning with joint feature learning methods. Moreover, MTR-GL achieves better performance than state-of-the-art deep multitask learning based methods of predicting ligand bioactivities on most datasets (31/35), where MTR-GL obtained an average improvement of 38% on correlation coefficient () and 29% on root-mean-square error over the DeepNeuralNet-QSAR predictors.

摘要

G 蛋白偶联受体(GPCRs)是最重要的药物靶点之一,约占市场上药物的 34%。对于药物发现,准确建模和解释配体的生物活性对于筛选和优化命中化合物至关重要。同源 GPCR 更有可能与化学相似的配体相互作用,并且它们往往与配体分子具有共同的结合模式。在学习配体生物活性时纳入同源 GPCR 可以通过利用增加的训练样本大小和控制生物活性的共同配体亚结构的存在来提高模型的准确性和可解释性。通过结合同源 GPCR 准确建模和解释配体的生物活性,可以将其表述为具有联合特征学习问题的多任务学习,并与组套索学习算法自然匹配。因此,我们提出了一种通过范数正则化实现的配体分子生物活性多任务回归学习(MTR-GL),并在涵盖人类 GPCR 九个亚家族的 35 个代表性 GPCR 数据集上测试了该算法。结果表明,MTR-GL 总体优于单任务学习方法和经典的联合特征学习多任务学习方法。此外,在预测配体生物活性方面,MTR-GL 在大多数数据集(31/35)上的性能优于基于深度学习的最新多任务学习方法,其中 MTR-GL 在相关系数()上的平均提高了 38%,在均方根误差上提高了 29%,超过了 DeepNeuralNet-QSAR 预测器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验