Suppr超能文献

AFSE:提高针对 GPCR 蛋白的配体生物活性的深度图学习模型泛化能力。

AFSE: towards improving model generalization of deep graph learning of ligand bioactivities targeting GPCR proteins.

机构信息

School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

National Engineering Research Center of Communications and Networking, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

出版信息

Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac077.

Abstract

Ligand molecules naturally constitute a graph structure. Recently, many excellent deep graph learning (DGL) methods have been proposed and used to model ligand bioactivities, which is critical for the virtual screening of drug hits from compound databases in interest. However, pharmacists can find that these well-trained DGL models usually are hard to achieve satisfying performance in real scenarios for virtual screening of drug candidates. The main challenges involve that the datasets for training models were small-sized and biased, and the inner active cliff cases would worsen model performance. These challenges would cause predictors to overfit the training data and have poor generalization in real virtual screening scenarios. Thus, we proposed a novel algorithm named adversarial feature subspace enhancement (AFSE). AFSE dynamically generates abundant representations in new feature subspace via bi-directional adversarial learning, and then minimizes the maximum loss of molecular divergence and bioactivity to ensure local smoothness of model outputs and significantly enhance the generalization of DGL models in predicting ligand bioactivities. Benchmark tests were implemented on seven state-of-the-art open-source DGL models with the potential of modeling ligand bioactivities, and precisely evaluated by multiple criteria. The results indicate that, on almost all 33 GPCRs datasets and seven DGL models, AFSE greatly improved their enhancement factor (top-10%, 20% and 30%), which is the most important evaluation in virtual screening of hits from compound databases, while ensuring the superior performance on RMSE and $r^2$. The web server of AFSE is freely available at http://noveldelta.com/AFSE for academic purposes.

摘要

配体分子自然构成图结构。最近,提出了许多优秀的深度图学习(DGL)方法,并将其用于模拟配体的生物活性,这对于从感兴趣的化合物数据库中虚拟筛选药物命中物至关重要。然而,药剂师可以发现,这些经过良好训练的 DGL 模型通常在实际的虚拟筛选场景中难以达到令人满意的性能。主要挑战包括用于训练模型的数据集规模小且存在偏差,以及内在的活性悬崖情况会恶化模型性能。这些挑战会导致预测器过度拟合训练数据,并且在实际的虚拟筛选场景中泛化能力较差。因此,我们提出了一种名为对抗特征子空间增强(AFSE)的新算法。AFSE 通过双向对抗学习在新的特征子空间中动态生成丰富的表示,然后最小化分子差异和生物活性的最大损失,以确保模型输出的局部平滑度,并显著提高 DGL 模型在预测配体生物活性方面的泛化能力。在具有建模配体生物活性潜力的七个最先进的开源 DGL 模型上进行了基准测试,并通过多种标准进行了精确评估。结果表明,在几乎所有 33 个 GPCR 数据集和七个 DGL 模型上,AFSE 极大地提高了它们的增强因子(前 10%、20%和 30%),这是虚拟筛选命中物的最重要评估,同时确保在 RMSE 和 $r^2$ 上具有优越的性能。AFSE 的网络服务器可免费用于学术目的,网址为 http://noveldelta.com/AFSE。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验