Suppr超能文献

基于近红外光谱技术结合机器学习方法预测暖季豆科牧草品质

Predicting Forage Quality of Warm-Season Legumes by Near Infrared Spectroscopy Coupled with Machine Learning Techniques.

机构信息

Department of Plant and Soil Sciences, Oklahoma State University, 371 Agricultural Hall, Stillwater, OK 74078, USA.

Department of Computer Science, Oklahoma State University, 219 MSCS, Stillwater, OK 74078, USA.

出版信息

Sensors (Basel). 2020 Feb 6;20(3):867. doi: 10.3390/s20030867.

Abstract

Warm-season legumes have been receiving increased attention as forage resources in the southern United States and other countries. However, the near infrared spectroscopy (NIRS) technique has not been widely explored for predicting the forage quality of many of these legumes. The objective of this research was to assess the performance of NIRS in predicting the forage quality parameters of five warm-season legumes-guar (), tepary bean (), pigeon pea (), soybean (), and mothbean ()-using three machine learning techniques: partial least square (PLS), support vector machine (SVM), and Gaussian processes (GP). Additionally, the efficacy of global models in predicting forage quality was investigated. A set of 70 forage samples was used to develop species-based models for concentrations of crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and in vitro true digestibility (IVTD) of guar and tepary bean forages, and CP and IVTD in pigeon pea and soybean. All species-based models were tested through 10-fold cross-validations, followed by external validations using 20 samples of each species. The global models for CP and IVTD of warm-season legumes were developed using a set of 150 random samples, including 30 samples for each of the five species. The global models were tested through 10-fold cross-validation, and external validation using five individual sets of 20 samples each for different legume species. Among techniques, PLS consistently performed best at calibrating (R = 0.94-0.98) all forage quality parameters in both species-based and global models. The SVM provided the most accurate predictions for guar and soybean crops, and global models, and both SVM and PLS performed better for tepary bean and pigeon pea forages. The global modeling approach that developed a single model for all five crops yielded sufficient accuracy (R/R = 0.92-0.99) in predicting CP of the different legumes. However, the accuracy of predictions of in vitro true digestibility (IVTD) for the different legumes was variable (R/R = 0.42-0.98). Machine learning algorithms like SVM could help develop robust NIRS-based models for predicting forage quality with a relatively small number of samples, and thus needs further attention in different NIRS based applications.

摘要

暖季豆科牧草在美国南部和其他国家作为饲料资源受到越来越多的关注。然而,近红外光谱(NIRS)技术尚未广泛应用于预测许多这些豆科牧草的饲草质量。本研究的目的是评估 NIRS 在使用三种机器学习技术(偏最小二乘法(PLS)、支持向量机(SVM)和高斯过程(GP))预测五种暖季豆科牧草(瓜尔豆、刺山柑、兵豆、大豆和木豆)的饲草质量参数方面的性能。此外,还研究了全局模型预测饲草质量的效果。使用 70 个饲草样本建立了基于物种的模型,用于预测瓜尔豆和刺山柑饲草的粗蛋白(CP)、酸性洗涤剂纤维(ADF)、中性洗涤剂纤维(NDF)和体外真消化率(IVTD)浓度,以及兵豆和大豆的 CP 和 IVTD。所有基于物种的模型均通过 10 折交叉验证进行测试,然后使用每种物种的 20 个样本进行外部验证。使用一组 150 个随机样本建立了暖季豆科牧草 CP 和 IVTD 的全局模型,其中包括每种物种的 30 个样本。使用 10 折交叉验证和 5 个不同物种的每组 20 个样本的外部验证对全局模型进行了测试。在技术方面,PLS 在基于物种和全局模型校准(R = 0.94-0.98)所有饲草质量参数方面表现始终最佳。SVM 为瓜尔豆和大豆作物以及全局模型提供了最准确的预测,SVM 和 PLS 为刺山柑和兵豆饲草的预测效果更好。为所有五种作物开发单一模型的全局建模方法在预测不同豆科作物的 CP 方面具有足够的准确性(R/R = 0.92-0.99)。然而,不同豆科植物体外真消化率(IVTD)预测的准确性是可变的(R/R = 0.42-0.98)。SVM 等机器学习算法可帮助开发基于 NIRS 的稳健模型,以相对较少的样本预测饲草质量,因此在不同的基于 NIRS 的应用中需要进一步关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1627/7038758/4bc831801c2b/sensors-20-00867-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验