Suppr超能文献

气辅挤出中双气层的形成机理及其对塑料微管成型的影响

The Formation Mechanism of the Double Gas Layer in Gas-Assisted Extrusion and Its Influence on Plastic Micro-Tube Formation.

作者信息

Liu Tongke, Huang Xingyuan, Luo Cheng, Wang Duyang

机构信息

College of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China.

出版信息

Polymers (Basel). 2020 Feb 6;12(2):355. doi: 10.3390/polym12020355.

Abstract

The diameter of a micro-tube is very small and its wall thickness is very thin. Thus, when applying double-layer gas-assisted extrusion technology to process a micro-tube, it is necessary to find the suitable inlet gas pressure and a method for forming a stable double gas layer. In this study, a double-layer gas-assisted extrusion experiment is conducted and combined with a numerical simulation made by POLYFLOW to analyze the effect of inlet gas pressure on micro-tube extrusion molding and the rheological properties of the melt under different inlet gas pressures. A method of forming a stable double gas layer is proposed, and its formation mechanism is analyzed. The research shows that when the inlet gas pressure is large, the viscosity on the inner and outer wall surfaces of the melt is very low due to the effects of shear thinning, viscous dissipation, and the compression effect of the melt, so the melt does not easily adhere to the wall surface of the die, and a double gas layer can be formed. When the inlet gas pressure slowly decreases, the effects of shear thinning and viscous dissipation are weakened, but the gas and the melt were constantly displacing each other and reaching a new balanced state and the gas and melt changed rapidly and steadily in the process without sudden changes, so the melt still does not easily adhere to the wall of the die. Thus, in this experiment, we adjusted the inlet gas pressure to 5000 Pa first to ensure that the melt do not adhere to the wall surface and then slowly increased the inlet gas pressure to 10,000 Pa to reduce the viscosity of the melt. Lastly, we slowly decreased the inlet gas pressure to 1000 Pa to form a stable double gas layer. Using this method will not only facilitate the formation of a stable double gas layer, but can also accurately control the diameter of the micro-tube.

摘要

微管的直径非常小,其壁厚也非常薄。因此,在应用双层气体辅助挤出技术加工微管时,需要找到合适的进气压力以及形成稳定双气层的方法。在本研究中,进行了双层气体辅助挤出实验,并结合POLYFLOW进行的数值模拟,以分析进气压力对微管挤出成型的影响以及不同进气压力下熔体的流变特性。提出了一种形成稳定双气层的方法,并分析了其形成机理。研究表明,当进气压力较大时,由于剪切变稀、粘性耗散以及熔体的压缩作用,熔体内外壁表面的粘度非常低,因此熔体不容易粘附在模具壁面上,从而可以形成双气层。当进气压力缓慢降低时,剪切变稀和粘性耗散的作用减弱,但气体和熔体不断相互置换并达到新的平衡状态,且在此过程中气体和熔体变化迅速且稳定,无突然变化,所以熔体仍然不容易粘附在模具壁上。因此,在本实验中,我们首先将进气压力调整到5000 Pa,以确保熔体不粘附在壁面上,然后将进气压力缓慢提高到10000 Pa以降低熔体粘度。最后,我们将进气压力缓慢降低到1000 Pa以形成稳定的双气层。使用这种方法不仅有利于形成稳定的双气层,还能精确控制微管的直径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5374/7077478/d38bd284959a/polymers-12-00355-g001.jpg

相似文献

4
Research on Inner Gas Inflation Improvements in Double-layer Gas-assisted Extrusion of Micro-tubes.
Polymers (Basel). 2020 Apr 13;12(4):899. doi: 10.3390/polym12040899.
6
In-process rheometry as a PAT tool for hot melt extrusion.
Drug Dev Ind Pharm. 2018 Apr;44(4):670-676. doi: 10.1080/03639045.2017.1408641. Epub 2017 Dec 4.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验