Jiang Liyang, Yoon Hongkyu, Bobet Antonio, Pyrak-Nolte Laura J
Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, 47907, USA.
Geomechanics Department, Sandia National Laboratories, Albuquerque, New Mexico, 87123, USA.
Sci Rep. 2020 Feb 10;10(1):2260. doi: 10.1038/s41598-020-58793-y.
Two longstanding goals in subsurface science are to induce fractures with a desired geometry and to adaptively control the interstitial geometry of existing fractures in response to changing subsurface conditions. Here, we demonstrate that microscopic mineral fabric and structure interact with macroscopic strain fields to generate emergent meso-scale geometries of induced fractures. These geometries define preferential directions of flow. Using additively manufactured rock, we demonstrate that highly conductive flow paths can be formed in tensile fractures by creating corrugated surfaces. Generation, suppression and enhancement of corrugations depend on the relative orientation between mineral fabric and layering. These insights into the role of micro-scale structure on macro-scale flow provide a new method for designing subsurface strategies to maximize potential production or to inhibit flow.
地下科学领域长期以来的两个目标是诱导出具有所需几何形状的裂缝,并根据不断变化的地下条件自适应地控制现有裂缝的孔隙几何形状。在此,我们证明微观矿物结构和构造与宏观应变场相互作用,从而产生诱导裂缝的新兴中尺度几何形状。这些几何形状定义了优先流动方向。利用增材制造岩石,我们证明通过创建波纹表面,可以在拉伸裂缝中形成高导流路径。波纹的产生、抑制和增强取决于矿物结构与分层之间的相对取向。这些关于微观尺度结构对宏观尺度流动作用的见解为设计地下策略提供了一种新方法,以实现潜在产量最大化或抑制流动。