Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Kingdom of Saudi Arabia.
Sci Rep. 2020 Feb 10;10(1):2209. doi: 10.1038/s41598-020-59072-6.
DNA alkylation damage is repaired by base excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG). Despite its role in DNA repair, AAG-initiated BER promotes cytotoxicity in a process dependent on poly (ADP-ribose) polymerase-1 (PARP-1); a NAD-consuming enzyme activated by strand break intermediates of the AAG-initiated repair process. Importantly, PARP-1 activation has been previously linked to impaired glycolysis and mitochondrial dysfunction. However, whether alkylation affects cellular metabolism in the absence of AAG-mediated BER initiation is unclear. To address this question, we temporally profiled repair and metabolism in wild-type and Aag cells treated with the alkylating agent methyl methanesulfonate (MMS). We show that, although Aag cells display similar levels of alkylation-induced DNA breaks as wild type, PARP-1 activation is undetectable in AAG-deficient cells. Accordingly, Aag cells are protected from MMS-induced NAD depletion and glycolysis inhibition. MMS-induced mitochondrial dysfunction, however, is AAG-independent. Furthermore, treatment with FK866, a selective inhibitor of the NAD salvage pathway enzyme nicotinamide phosphoribosyltransferase (NAMPT), synergizes with MMS to induce cytotoxicity and Aag cells are resistant to this combination FK866 and MMS treatment. Thus, AAG plays an important role in the metabolic response to alkylation that could be exploited in the treatment of conditions associated with NAD dysregulation.
DNA 烷基化损伤由碱基切除修复 (BER) 修复,该修复由烷基腺嘌呤 DNA 糖基化酶 (AAG) 启动。尽管 AAG 在 DNA 修复中发挥作用,但 AAG 启动的 BER 通过多聚 (ADP-核糖) 聚合酶-1 (PARP-1) 促进细胞毒性,该过程依赖于 AAG 启动的修复过程中的链断裂中间体激活的 NAD 消耗酶;PARP-1 的激活先前与糖酵解和线粒体功能障碍受损有关。然而,在没有 AAG 介导的 BER 起始的情况下,烷基化是否会影响细胞代谢尚不清楚。为了解决这个问题,我们在使用烷化剂甲磺酸甲酯 (MMS) 处理的野生型和 Aag 细胞中,暂时对修复和代谢进行了分析。我们表明,尽管 Aag 细胞显示出与野生型相似水平的烷化诱导的 DNA 断裂,但在 AAG 缺陷细胞中无法检测到 PARP-1 的激活。因此,Aag 细胞免受 MMS 诱导的 NAD 耗竭和糖酵解抑制的影响。然而,MMS 诱导的线粒体功能障碍与 AAG 无关。此外,FK866(NAD 补救途径酶烟酰胺磷酸核糖基转移酶(NAMPT)的选择性抑制剂)的处理与 MMS 协同诱导细胞毒性,并且 Aag 细胞对这种 FK866 和 MMS 联合治疗具有抗性。因此,AAG 在烷化剂代谢反应中发挥着重要作用,这可能在治疗与 NAD 失调相关的疾病中得到利用。