Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
Cell Rep. 2021 Mar 16;34(11):108864. doi: 10.1016/j.celrep.2021.108864.
N-Nitrosodimethylamine (NDMA) is a DNA-methylating agent that has been discovered to contaminate water, food, and drugs. The alkyladenine DNA glycosylase (AAG) removes methylated bases to initiate the base excision repair (BER) pathway. To understand how gene-environment interactions impact disease susceptibility, we study Aag-knockout (Aag) and Aag-overexpressing mice that harbor increased levels of either replication-blocking lesions (3-methyladenine [3MeA]) or strand breaks (BER intermediates), respectively. Remarkably, the disease outcome switches from cancer to lethality simply by changing AAG levels. To understand the underlying basis for this observation, we integrate a suite of molecular, cellular, and physiological analyses. We find that unrepaired 3MeA is somewhat toxic, but highly mutagenic (promoting cancer), whereas excess strand breaks are poorly mutagenic and highly toxic (suppressing cancer and promoting lethality). We demonstrate that the levels of a single DNA repair protein tip the balance between blocks and breaks and thus dictate the disease consequences of DNA damage.
N-亚硝基二甲胺(NDMA)是一种 DNA 甲基化剂,已被发现会污染水、食物和药物。烷基腺嘌呤 DNA 糖基化酶(AAG)会去除甲基化碱基,从而启动碱基切除修复(BER)途径。为了了解基因-环境相互作用如何影响疾病易感性,我们研究了 Aag 敲除(Aag)和 Aag 过表达小鼠,它们分别具有增加的复制阻断损伤(3-甲基腺嘌呤[3MeA])或链断裂(BER 中间体)水平。值得注意的是,仅仅通过改变 AAG 水平,疾病结局就从癌症转变为致死。为了理解这一观察结果的基础,我们整合了一系列分子、细胞和生理分析。我们发现未修复的 3MeA 具有一定的毒性,但具有高度的致突变性(促进癌症),而过量的链断裂则具有较差的致突变性和高度的毒性(抑制癌症并促进致死)。我们证明,单一 DNA 修复蛋白的水平会打破阻碍和断裂之间的平衡,从而决定 DNA 损伤的疾病后果。