Physikalisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany.
ISM-CNR, Trieste LD2 Unit, Trieste, Italy.
Nature. 2020 Feb;578(7795):386-391. doi: 10.1038/s41586-020-2005-6. Epub 2020 Feb 10.
Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters, multilayer mirrors and manipulation of the driving field. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.
飞秒脉冲是研究价电子和芯电子动力学的核心,在其自然时间尺度上进行研究。迄今为止,只有通过高阶谐波产生过程,才能重现产生和描述飞秒脉冲波形。已经提出了几种用于形成飞秒脉冲波形的方法,包括使用金属滤波器、多层镜和驱动场的操纵。然而,这些方法都不能灵活地控制飞秒脉冲波形的时间特性,并且它们受到高阶谐波产生过程的低转换效率的限制。相比之下,自由电子激光器提供从数十微焦耳到几毫焦耳的飞秒、极紫外和 X 射线脉冲。最近的实验表明,它们可以产生亚飞秒尖峰,但时间特性会随shots 变化。在这里,我们报告了使用种子自由电子激光器可重现产生高能(微焦耳级)飞秒脉冲波形。我们演示了飞秒脉冲串的谐波分量的振幅和相位控制,以及对其时间重建的方法。这里展示的结果为使用自由电子激光器进行飞秒时间分辨实验开辟了道路。