Nie Jun, Liu Sa, Yu Tingting, Li Yusha, Ping Junyu, Wan Peng, Zhao Fang, Huang Yujie, Mei Wei, Zeng Shaoqun, Zhu Dan, Fei Peng
School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China.
Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China.
Adv Sci (Weinh). 2019 Dec 3;7(3):1901891. doi: 10.1002/advs.201901891. eCollection 2020 Feb.
The recent integration of light-sheet microscopy and tissue-clearing has facilitated an important alternative to conventional histological imaging approaches. However, the in toto cellular mapping of neural circuits throughout an intact mouse brain remains highly challenging, requiring complicated mechanical stitching, and suffering from anisotropic resolution insufficient for high-quality reconstruction in 3D. Here, the use of a multiangle-resolved subvoxel selective plane illumination microscope (Mars-SPIM) is proposed to achieve high-throughput imaging of whole mouse brain at isotropic cellular resolution. This light-sheet imaging technique can computationally improve the spatial resolution over six times under a large field of view, eliminating the use of slow tile stitching. Furthermore, it can recover complete structural information of the sample from images subject to thick-tissue scattering/attenuation. With Mars-SPIM, a digital atlas of a cleared whole mouse brain (≈7 mm × 9.5 mm × 5 mm) can readily be obtained with an isotropic resolution of ≈2 µm (1 µm voxel) and a short acquisition time of 30 min. It provides an efficient way to implement system-level cellular analysis, such as the mapping of different neuron populations and tracing of long-distance neural projections over the entire brain. Mars-SPIM is thus well suited for high-throughput cell-profiling phenotyping of brain and other mammalian organs.
最近光片显微镜技术与组织透明化技术的结合为传统组织学成像方法提供了一种重要的替代方案。然而,对完整小鼠大脑中的神经回路进行全细胞图谱绘制仍然极具挑战性,需要复杂的机械拼接,并且存在各向异性分辨率不足的问题,无法进行高质量的三维重建。在此,我们提出使用多角度分辨亚体素选择性平面照明显微镜(Mars-SPIM),以各向同性的细胞分辨率实现对整个小鼠大脑的高通量成像。这种光片成像技术可以在大视野下通过计算将空间分辨率提高六倍以上,无需使用耗时的平铺拼接。此外,它可以从受厚组织散射/衰减影响的图像中恢复样品的完整结构信息。使用Mars-SPIM,可以轻松获得一个清除后的完整小鼠大脑(约7毫米×9.5毫米×5毫米)的数字图谱,各向同性分辨率约为2微米(1微米体素),采集时间仅为30分钟。它为实施系统级细胞分析提供了一种有效方法,例如绘制不同神经元群体的图谱以及追踪整个大脑中的长距离神经投射。因此,Mars-SPIM非常适合对大脑和其他哺乳动物器官进行高通量细胞剖析表型分析。