Zhao Fang, Zhu Lanxin, Fang Chunyu, Yu Tingting, Zhu Dan, Fei Peng
School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
These authors contribute equally to this work.
Biomed Opt Express. 2020 Nov 23;11(12):7273-7285. doi: 10.1364/BOE.409732. eCollection 2020 Dec 1.
Isotropic 3D histological imaging of large biological specimens is highly desired but remains highly challenging to current fluorescence microscopy technique. Here we present a new method, termed deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM), to enable fast, isotropic light-sheet fluorescence imaging on a conventional wide-field microscope. After integrating a minimized add-on device that transforms an inverted microscope into a 3D light-sheet microscope, we further integrate a deep neural network (DNN) procedure to quickly restore the ambiguous z-reconstructed planes that suffer from still insufficient axial resolution of light-sheet illumination, thereby achieving isotropic 3D imaging of thick biological specimens at single-cell resolution. We apply this easy and cost-effective Deep-SLAM approach to the anatomical imaging of single neurons in a meso-scale mouse brain, demonstrating its potential for readily converting commonly-used commercialized 2D microscopes to high-throughput 3D imaging, which is previously exclusive for high-end microscopy implementations.
对大型生物标本进行各向同性的三维组织学成像非常必要,但对于当前的荧光显微镜技术来说仍然极具挑战性。在此,我们提出一种新方法,称为深度学习超分辨率光片附加显微镜(Deep-SLAM),以在传统宽场显微镜上实现快速、各向同性的光片荧光成像。在集成了一个将倒置显微镜转变为三维光片显微镜的小型化附加装置后,我们进一步集成了一个深度神经网络(DNN)程序,以快速恢复因光片照明的轴向分辨率仍不足而模糊的z重建平面,从而在单细胞分辨率下实现对厚生物标本的各向同性三维成像。我们将这种简便且经济高效的Deep-SLAM方法应用于中尺度小鼠大脑中单神经元的解剖成像,证明了其将常用的商业化二维显微镜轻松转换为高通量三维成像的潜力,而这在以前只有高端显微镜才能实现。