Suppr超能文献

关于精密纳米药物的设计。

On the design of precision nanomedicines.

机构信息

School of Life Science, Anhui University, Hefei, P. R. China.

Department of Chemistry, Anhui University, Hefei, P. R. China.

出版信息

Sci Adv. 2020 Jan 24;6(4):eaat0919. doi: 10.1126/sciadv.aat0919. eCollection 2020 Jan.

Abstract

Tight control on the selectivity of nanoparticles' interaction with biological systems is paramount for the development of targeted therapies. However, the large number of tunable parameters makes it difficult to identify optimal design "sweet spots" without guiding principles. Here, we combine superselectivity theory with soft matter physics into a unified theoretical framework and we prove its validity using blood brain barrier cells as target. We apply our approach to polymersomes functionalized with targeting ligands to identify the most selective combination of parameters in terms of particle size, brush length and density, as well as tether length, affinity, and ligand number. We show that the combination of multivalent interactions into multiplexed systems enable interaction as a function of the cell phenotype, that is, which receptors are expressed. We thus propose the design of a "bar-coding" targeting approach that can be tailor-made to unique cell populations enabling personalized therapies.

摘要

对纳米粒子与生物系统相互作用的选择性进行严格控制,对于开发靶向治疗至关重要。然而,可调参数众多,使得在没有指导原则的情况下,很难确定最佳设计“理想点”。在这里,我们将超选择性理论与软物质物理结合到一个统一的理论框架中,并通过以血脑屏障细胞为靶标证明了其有效性。我们将我们的方法应用于靶向配体功能化的聚合物囊泡,以确定在粒径、刷长和密度以及连接臂长度、亲和力和配体数量方面最具选择性的参数组合。我们表明,将多价相互作用组合到多路复用系统中,可以使相互作用成为细胞表型的函数,也就是说,表达哪些受体。因此,我们提出了一种“条形码”靶向方法的设计,可以针对独特的细胞群体进行定制,从而实现个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b2/6981090/048ed88562a0/aat0919-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验