Gura Sadovsky Rotem, Brielle Shlomi, Kaganovich Daniel, England Jeremy L
Physics of Living Systems Group, Massachusetts Institute of Technology, Cambridge, MA 02138, USA; Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel; Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Cell Rep. 2017 Mar 14;18(11):2795-2806. doi: 10.1016/j.celrep.2017.02.063.
The fluorescence microscopy methods presently used to characterize protein motion in cells infer protein motion from indirect observables, rather than measuring protein motion directly. Operationalizing these methods requires expertise that can constitute a barrier to their broad utilization. Here, we have developed PIPE (photo-converted intensity profile expansion) to directly measure the motion of tagged proteins and quantify it using an effective diffusion coefficient. PIPE works by pulsing photo-convertible fluorescent proteins, generating a peaked fluorescence signal at the pulsed region, and analyzing the spatial expansion of the signal. We demonstrate PIPE's success in measuring accurate diffusion coefficients in silico and in vitro and compare effective diffusion coefficients of native cellular proteins and free fluorophores in vivo. We apply PIPE to measure diffusion anomality in the cell and use it to distinguish free fluorophores from native cellular proteins. PIPE's direct measurement and ease of use make it appealing for cell biologists.
目前用于表征细胞中蛋白质运动的荧光显微镜方法是从间接可观测值推断蛋白质运动,而不是直接测量蛋白质运动。实施这些方法需要专业知识,这可能会成为其广泛应用的障碍。在这里,我们开发了PIPE(光转换强度轮廓扩展)来直接测量标记蛋白质的运动,并使用有效扩散系数对其进行量化。PIPE的工作原理是对光转换荧光蛋白进行脉冲处理,在脉冲区域产生一个峰值荧光信号,并分析信号的空间扩展。我们证明了PIPE在硅基和体外测量准确扩散系数方面的成功,并比较了体内天然细胞蛋白质和游离荧光团的有效扩散系数。我们应用PIPE来测量细胞中的扩散异常,并利用它来区分游离荧光团和天然细胞蛋白质。PIPE的直接测量和易用性使其对细胞生物学家具有吸引力。