Suppr超能文献

黑曲霉产果胶酶和α-半乳糖苷酶用于酶法大豆加工。

Aspergillus niger production of pectinase and α-galactosidase for enzymatic soy processing.

机构信息

Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States.

Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States.

出版信息

Enzyme Microb Technol. 2020 Mar;134:109476. doi: 10.1016/j.enzmictec.2019.109476. Epub 2019 Nov 17.

Abstract

Soybean is a most promising sustainable protein source for feed and food to help meet the protein demand of the rapidly rising global population. To enrich soy protein, the environment-friendly enzymatic processing requires multiple carbohydrases including cellulase, xylanase, pectinase, α-galactosidase and sucrase. Besides enriched protein, the processing adds value by generating monosaccharides that are ready feedstock for biofuel/bioproducts. Aspergillus could produce the required carbohydrases, but with deficient pectinase and α-galactosidase. Here we address this critical technological gap by focused evaluation of the suboptimal productivity of pectinase and α-galactosidase. A carbohydrases-productive strain A. niger (NRRL 322) was used with soybean hull as inducing substrate. Temperatures at 20 °C, 25 °C and 30 °C were found to affect cell growth on sucrose with an Arrhenius-law activation energy of 28.7 kcal/mol. The 30 °C promoted the fastest cell growth (doubling time = 2.1 h) and earliest enzyme production, but it gave lower final enzyme yield due to earlier carbon-source exhaustion. The 25 °C gave the highest enzyme yield. pH conditions also strongly affected enzyme production. Fermentations made with initial pH of 6 or 7 were most productive, e.g., giving 1.9- to 2.3-fold higher pectinase and 2.2- to 2.3-fold higher α-galactosidase after 72 h, compared to the fermentation with a constant pH 4. Further, pH must be kept above 2.6 to avoid limitation in pectinase production and, in the later substrate-limiting stage, kept below 5.5 to avoid pectinase degradation. α-Galactosidase production always followed the pectinase production with a 16-24 h lag; presumably, the former relied on pectin hydrolysis for inducers generation. Optimal enzyme production requires controlling the transient availability of inducers.

摘要

大豆是一种极有前途的可持续蛋白质饲料和食品资源,可以帮助满足全球人口快速增长带来的蛋白质需求。为了丰富大豆蛋白,环保型酶处理需要多种碳水化合物酶,包括纤维素酶、木聚糖酶、果胶酶、α-半乳糖苷酶和蔗糖酶。除了富含蛋白质外,该加工还通过生成单糖来增加价值,这些单糖是生物燃料/生物制品的现成原料。曲霉可以产生所需的碳水化合物酶,但果胶酶和α-半乳糖苷酶的产量不足。在这里,我们通过集中评估果胶酶和α-半乳糖苷酶的次优生产力来解决这一关键技术差距。使用产碳水化合物酶的黑曲霉(NRRL 322)菌株,并以大豆皮作为诱导底物。发现 20°C、25°C 和 30°C 的温度会影响蔗糖上的细胞生长,阿仑尼乌斯定律的活化能为 28.7kcal/mol。30°C 促进了最快的细胞生长(倍增时间=2.1 小时)和最早的酶产生,但由于更早的碳源耗尽,最终酶产量较低。25°C 给出了最高的酶产量。pH 值条件也强烈影响酶的产生。初始 pH 值为 6 或 7 的发酵最具生产力,例如,与 pH 值为 4 的发酵相比,72 小时后果胶酶和α-半乳糖苷酶的产量分别提高了 1.9 到 2.3 倍和 2.2 到 2.3 倍。此外,必须将 pH 值保持在 2.6 以上以避免果胶酶产量受限,在后期的底物限制阶段,必须将 pH 值保持在 5.5 以下以避免果胶酶降解。α-半乳糖苷酶的产生总是滞后于果胶酶的产生,滞后 16-24 小时;大概前者依赖于果胶水解来产生诱导物。最佳的酶生产需要控制诱导物的瞬时可用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验