Marah Bockarie Daniel, Jing Zilong, Ma Tinghuai, Alsabri Raeed, Anaadumba Raphael, Al-Dhelaan Abdullah, Al-Dhelaan Mohammed
School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210-044, Jiangsu,China.
College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia.
Sensors (Basel). 2020 Feb 7;20(3):892. doi: 10.3390/s20030892.
The current baseline architectures in the field of the Internet of Things (IoT) strongly recommends the use of edge computing in the design of the solution applications instead of the traditional approach which solely uses the cloud/core for analysis and data storage. This research, therefore, focuses on formulating an edge-centric IoT architecture for smartphones which are very popular electronic devices that are capable of executing complex computational tasks at the network edge. A novel smartphone IoT architecture (SMIoT) is introduced that supports data capture and preprocessing, model (i.e., machine learning models) deployment, model evaluation and model updating tasks. Moreover, a novel model evaluation and updating scheme is provided which ensures model validation in real-time. This ensures a sustainable and reliable model at the network edge that automatically adjusts to changes in the IoT data subspace. Finally, the proposed architecture is tested and evaluated using an IoT use case.
物联网(IoT)领域当前的基线架构强烈建议在解决方案应用设计中使用边缘计算,而不是仅将云/核心用于分析和数据存储的传统方法。因此,本研究专注于为智能手机制定以边缘为中心的物联网架构,智能手机是非常受欢迎的电子设备,能够在网络边缘执行复杂的计算任务。本文介绍了一种新颖的智能手机物联网架构(SMIoT),它支持数据捕获和预处理、模型(即机器学习模型)部署、模型评估和模型更新任务。此外,还提供了一种新颖的模型评估和更新方案,可确保实时进行模型验证。这确保了网络边缘有一个可持续且可靠的模型,能自动适应物联网数据子空间的变化。最后,使用一个物联网用例对所提出的架构进行了测试和评估。