Suppr超能文献

物联网场景下的室内温度预测。

Indoor Temperature Prediction in an IoT Scenario.

机构信息

Department of Electrical and Computer Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, 2829-516 Lisboa, Portugal.

Centro de Tecnologías Biomédicas, Universidad Politécnica de Madrid, 28223 Madrid, Spain.

出版信息

Sensors (Basel). 2018 Oct 24;18(11):3610. doi: 10.3390/s18113610.

Abstract

One of the hottest topics being researched in the field of IoT relates to making connected devices smarter, by locally computing relevant information and integrating data coming from other sensors through a local network. Such works are still in their early stages either by lack of access to data or, on the other hand, by the lack of simple test cases with a clear added value. This contribution aims at shading some light on how knowledge can be obtained, using a simple use case. It focuses on the feasibility of having a home refrigerator performing temperature forecasts, using information provided by both internal and external sensors. The problem is reviewed for both its potential applications and to compare the use of different algorithms, from simple linear correlations to ARIMA models. We analyse the precision and computational cost using real data from a refrigerator. Results indicate that small average errors, down to ≈0.09 ∘ C, can be obtained. Lastly, it is devised how can the scenario be improved, and, most importantly, how this work can be extended in the future.

摘要

物联网领域研究的热门话题之一是通过在本地计算相关信息并通过本地网络集成来自其他传感器的数据,使连接的设备更加智能化。这些工作要么由于缺乏数据访问,要么由于缺乏具有明显附加值的简单测试用例,目前仍处于早期阶段。本贡献旨在通过一个简单的用例说明如何获取知识。它侧重于使用内部和外部传感器提供的信息来预测家用冰箱温度的可行性。从简单的线性相关性到 ARIMA 模型,对其潜在应用和不同算法的使用进行了比较。我们使用冰箱的实际数据分析了精度和计算成本。结果表明,可以获得小的平均误差,低至 ≈0.09 ∘ C。最后,设计了如何改进场景,以及最重要的是,如何在未来扩展这项工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df74/6264091/ff8c38ccaf3d/sensors-18-03610-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验