Hart Cacie, Rajaraman Swaminathan
Department of Materials Science & Engineering, University of Central Florida, Orlando, FL 32816, USA.
NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA.
Micromachines (Basel). 2020 Feb 8;11(2):178. doi: 10.3390/mi11020178.
Laser micromachining is a direct write microfabrication technology that has several advantages over traditional micro/nanofabrication techniques. In this paper, we present a comprehensive characterization of a QuikLaze 50ST2 multimodal laser micromachining tool by determining the ablation characteristics of six (6) different materials and demonstrating two applications. Both the thermodynamic theoretical and experimental ablation characteristics of stainless steel (SS) and aluminum are examined at 1064 nm, silicon and polydimethylsiloxane (PDMS) at 532 nm, and Kapton and polyethylene terephthalate at 355 nm. We found that the experimental data aligned well with the theoretical analysis. Additionally, two applications of this multimodal laser micromachining technology are demonstrated: shadow masking down to approximately 1.5 µm feature sizes and interdigitated electrode (IDE) fabrication down to 7 µm electrode gap width.
激光微加工是一种直接写入式微制造技术,与传统的微/纳米制造技术相比具有多个优势。在本文中,我们通过确定六种不同材料的烧蚀特性并展示两种应用,对QuikLaze 50ST2多模态激光微加工工具进行了全面表征。研究了不锈钢(SS)和铝在1064 nm波长下的热力学理论和实验烧蚀特性,硅和聚二甲基硅氧烷(PDMS)在532 nm波长下的烧蚀特性,以及Kapton和聚对苯二甲酸乙二酯在355 nm波长下的烧蚀特性。我们发现实验数据与理论分析结果吻合良好。此外,还展示了这种多模态激光微加工技术的两种应用:制造特征尺寸小至约1.5 µm的阴影掩膜和电极间隙宽度小至7 µm的叉指电极(IDE)。