Didier Charles M, Kundu Avra, Shoemaker James T, Vukasinovic Jelena, Rajaraman Swaminathan
University of Central Florida, Orlando, FL 32816, USA.
Lena Biosciences, Atlanta, GA 30332, USA.
J Microelectromech Syst. 2020 Oct;29(5):653-660. doi: 10.1109/jmems.2020.3003452. Epub 2020 Jun 26.
We have developed a new technology for the realization of composite biosensor systems, capable of measuring electrical and electrophysiological signals from electrogenic cells, using SeedEZ™ 3D cell culture-scaffold material. This represents a paradigm-shift for BioMEMS processing; 'Biology-Microfabrication' versus the standard 'Microfabrication-Biology' approach. An Interdigitated Electrode (IDE) developed on the 3D cell-scaffold was used to successfully monitor acute cardiomyocyte growth and controlled population decline. We have further characterized processability of the 3D scaffold, demonstrated long-term biocompatibility of the scaffold with various cell lines and developed a multifunctional layered biosensor composites (MLBCs) using SeedEZ™ and other biocompatible substrates for future multilayer sensor integration.
我们开发了一种用于实现复合生物传感器系统的新技术,该技术能够使用SeedEZ™ 3D细胞培养支架材料测量来自电生细胞的电信号和电生理信号。这代表了生物微机电系统加工的范式转变;即“生物微制造”与标准的“微制造-生物学”方法相对。在3D细胞支架上开发的叉指电极(IDE)被用于成功监测急性心肌细胞的生长和受控的细胞数量下降。我们进一步表征了3D支架的可加工性,证明了该支架与各种细胞系的长期生物相容性,并使用SeedEZ™和其他生物相容性底物开发了多功能分层生物传感器复合材料(MLBC),用于未来的多层传感器集成。