Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, Saitama, Japan.
Biosci Biotechnol Biochem. 2020 Jun;84(6):1221-1231. doi: 10.1080/09168451.2020.1727309. Epub 2020 Feb 12.
Lysosome is the principal organelle for the ultimate degradation of cellular macromolecules, which are delivered through endocytosis, phagocytosis, and autophagy. The lysosomal functions have been found to be impaired by fatty foods and aging, and more importantly, the lysosomal dysfunction in macrophages has been reported as a risk of atherosclerosis development. In this study, we searched for dietary polyphenols which possess the activity for enhancing the lysosomal degradation in J774.1, a murine macrophage-like cell line. Screening test utilizing DQ-BSA digestion identified isorhamnetin (3'--methylquercetin) as an active compound. Interestingly, structural comparison to inactive flavonols revealed that the chemical structure of the B-ring moiety in isorhamnetin is the primary determinant of its lysosome-enhancing activity. Unexpectedly isorhamnetin failed to inhibit mTORC1-TFEB signaling, a master regulator of lysosomal biogenesis and function. Our data suggested that the other molecular mechanism might be critical for the regulation of lysosomes in macrophages. ANOVA: analysis of variance; ApoE: apolipoprotein E; ATP6V0D2: ATPase H transporting V0 subunit d2; BAF: bafilomycin A1; BODIPY: boron dipyrromethene; BSA: bovine serum albumin; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco's modified eagle medium; DMSO: dimethyl sulfoxide; EGCG: epigallocatechin-3-gallate; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HPLC: high-performance liquid chromatography; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LC-MS/MS: liquid chromatography tandem mass spectrometry; MITF: microphthalmia-associated transcription factor; MRM: multiple reaction monitoring; mTORC1: mechanistic target of rapamycin complex 1; PBS: phosphate-buffered saline; PPARγ: peroxisome proliferator-activated receptor γ; RT-qPCR: reverse transcription quantitative polymerase chain reaction; SDS: sodium dodecyl sulfate; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment protein receptor; TBS: Tris-buffered saline; TFA: trifluoroacetic acid; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcriptional factor EB; TFEC: transcription factor EC; V-ATPase: vacuolar-type proton ATPase.
溶酶体是细胞内大分子最终降解的主要细胞器,这些大分子通过内吞作用、吞噬作用和自噬作用被输送到溶酶体中。已经发现溶酶体的功能会受到高脂肪食物和衰老的影响,更重要的是,巨噬细胞中的溶酶体功能障碍已被报道为动脉粥样硬化发展的一个风险因素。在这项研究中,我们在 J774.1(一种鼠源巨噬样细胞系)中寻找具有增强溶酶体降解活性的膳食多酚。利用 DQ-BSA 消化的筛选试验鉴定出异鼠李素(3'-甲基槲皮素)为一种活性化合物。有趣的是,与非活性类黄酮的结构比较表明,异鼠李素 B 环部分的化学结构是其增强溶酶体活性的主要决定因素。出乎意料的是,异鼠李素未能抑制 mTORC1-TFEB 信号通路,该信号通路是溶酶体生物发生和功能的主要调节因子。我们的数据表明,其他分子机制可能对巨噬细胞中溶酶体的调节至关重要。ANOVA:方差分析;ApoE:载脂蛋白 E;ATP6V0D2:ATP 酶 H 转运 V0 亚基 d2;BAF:巴佛洛霉素 A1;BODIPY:硼二吡咯甲川;BSA:牛血清白蛋白;CTSD:组织蛋白酶 D;CTSF:组织蛋白酶 F;DMEM:杜尔贝科改良伊格尔培养基;DMSO:二甲基亚砜;EGCG:表没食子儿茶素-3-没食子酸酯;FBS:胎牛血清;GAPDH:甘油醛-3-磷酸脱氢酶;HPLC:高效液相色谱法;LAMP1:溶酶体相关膜蛋白 1;LAMP2A:溶酶体相关膜蛋白 2A;LC-MS/MS:液相色谱串联质谱法;MITF:小眼畸形相关转录因子;MRM:多重反应监测;mTORC1:雷帕霉素靶蛋白复合物 1;PBS:磷酸盐缓冲盐水;PPARγ:过氧化物酶体增殖物激活受体 γ;RT-qPCR:反转录定量聚合酶链反应;SDS:十二烷基硫酸钠;SNARE:可溶性 N-乙基马来酰亚胺敏感因子附着蛋白受体;TBS:三羟甲基氨基甲烷缓冲盐水;TFA:三氟乙酸;TFE3:转录因子结合 IGHM 增强子 3;TFEB:转录因子 EB;TFEC:转录因子 EC;V-ATPase:液泡型质子 ATP 酶。