Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
Department of Medicine, Division of Endocrinology, Metabolism, Lipid Research, Washington University School of Medicine, St. Louis, MO, USA.
Autophagy. 2021 Nov;17(11):3740-3752. doi: 10.1080/15548627.2021.1896906. Epub 2021 Mar 11.
The autophagy-lysosome system is an important cellular degradation pathway that recycles dysfunctional organelles and cytotoxic protein aggregates. A decline in this system is pathogenic in many human diseases including neurodegenerative disorders, fatty liver disease, and atherosclerosis. Thus there is intense interest in discovering therapeutics aimed at stimulating the autophagy-lysosome system. Trehalose is a natural disaccharide composed of two glucose molecules linked by a ɑ-1,1-glycosidic bond with the unique ability to induce cellular macroautophagy/autophagy and with reported efficacy on mitigating several diseases where autophagy is dysfunctional. Interestingly, the mechanism by which trehalose induces autophagy is unknown. One suggested mechanism is its ability to activate TFEB (transcription factor EB), the master transcriptional regulator of autophagy-lysosomal biogenesis. Here we describe a potential mechanism involving direct trehalose action on the lysosome. We find trehalose is endocytically taken up by cells and accumulates within the endolysosomal system. This leads to a low-grade lysosomal stress with mild elevation of lysosomal pH, which acts as a potent stimulus for TFEB activation and nuclear translocation. This process appears to involve inactivation of MTORC1, a known negative regulator of TFEB which is sensitive to perturbations in lysosomal pH. Taken together, our data show the trehalose can act as a weak inhibitor of the lysosome which serves as a trigger for TFEB activation. Our work not only sheds light on trehalose action but suggests that mild alternation of lysosomal pH can be a novel method of inducing the autophagy-lysosome system. ASO: antisense oligonucleotide; AU: arbitrary units; BMDM: bone marrow-derived macrophages; CLFs: crude lysosomal fractions; CTSD: cathepsin D; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; MAP1LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; pMAC: peritoneal macrophages; SLC2A8/GLUT8: solute carrier family 2, (facilitated glucose transporter), member 8; TFEB: transcription factor EB; TMR: tetramethylrhodamine; TREH: trehalase.
自噬溶酶体系统是一种重要的细胞降解途径,可回收功能失调的细胞器和细胞毒性蛋白聚集体。该系统的衰退在许多人类疾病中具有致病性,包括神经退行性疾病、脂肪肝和动脉粥样硬化。因此,人们强烈关注发现旨在刺激自噬溶酶体系统的治疗方法。海藻糖是一种由两个葡萄糖分子通过α-1,1-糖苷键连接而成的天然二糖,具有独特的诱导细胞巨自噬/自噬的能力,并已被报道可减轻几种自噬功能失调的疾病。有趣的是,海藻糖诱导自噬的机制尚不清楚。一种假设的机制是其激活 TFEB(转录因子 EB)的能力,TFEB 是自噬溶酶体生物发生的主要转录调节因子。在这里,我们描述了一种涉及海藻糖对溶酶体直接作用的潜在机制。我们发现海藻糖被细胞内吞摄取,并在内溶酶体系统中积累。这导致轻度溶酶体应激,伴有轻微的溶酶体 pH 升高,这是 TFEB 激活和核转位的有力刺激。这个过程似乎涉及 MTORC1 的失活,MTORC1 是 TFEB 的已知负调节剂,对溶酶体 pH 的波动敏感。总之,我们的数据表明,海藻糖可以作为溶酶体的弱抑制剂,作为 TFEB 激活的触发因素。我们的工作不仅阐明了海藻糖的作用,还表明轻度改变溶酶体 pH 可能是诱导自噬溶酶体系统的一种新方法。ASO:反义寡核苷酸;AU:任意单位;BMDM:骨髓来源的巨噬细胞;CLFs:粗溶酶体级分;CTSD:组织蛋白酶 D;LAMP:溶酶体相关膜蛋白;LIPA/LAL:溶酶体酸性脂肪酶;MAP1LC3:微管相关蛋白 1 轻链 3;MFI:平均荧光强度;MTORC1:雷帕霉素靶蛋白激酶复合物 1;pMAC:腹腔巨噬细胞;SLC2A8/GLUT8:溶质载体家族 2(促进葡萄糖转运蛋白),成员 8;TFEB:转录因子 EB;TMR:四甲基罗丹明;TREH:海藻糖酶。