Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.
Commun Biol. 2020 Feb 11;3(1):61. doi: 10.1038/s42003-020-0790-y.
Particle selection is a crucial step when processing electron cryo microscopy data. Several automated particle picking procedures were developed in the past but most struggle with non-ideal data sets. In our recent Communications Biology article, we presented crYOLO, a deep learning based particle picking program. It enables fast, automated particle picking at human levels of accuracy with low effort. A general model allows the use of crYOLO for selecting particles in previously unseen data sets without further training. Here we describe how crYOLO has evolved since its initial release. We have introduced filament picking, a new denoising technique, and a new graphical user interface. Moreover, we outline its usage in automated processing pipelines, which is an important advancement on the horizon of the field.
粒子选择是处理电子晶体显微镜数据的关键步骤。过去已经开发了几种自动化的粒子挑选程序,但大多数程序都难以处理非理想数据集。在我们最近发表在《通讯生物学》上的文章中,我们提出了基于深度学习的粒子挑选程序 crYOLO。它能够以人类的准确度实现快速、自动化的粒子挑选,且所需工作量较低。一个通用模型允许使用 crYOLO 在没有进一步训练的情况下选择以前未见过的数据集的粒子。在这里,我们描述了自最初发布以来 crYOLO 的发展情况。我们引入了丝状粒子挑选、一种新的去噪技术和一个新的图形用户界面。此外,我们还概述了它在自动化处理管道中的使用,这是该领域的一个重要进展。