Sakakura Masaaki, Lei Yuhao, Wang Lei, Yu Yan-Hao, Kazansky Peter G
Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ UK.
Light Sci Appl. 2020 Feb 4;9:15. doi: 10.1038/s41377-020-0250-y. eCollection 2020.
Polarization and geometric phase shaping via a space-variant anisotropy has attracted considerable interest for fabrication of flat optical elements and generation of vector beams with applications in various areas of science and technology. Among the methods for anisotropy patterning, imprinting of self-assembled nanograting structures in silica glass by femtosecond laser writing is promising for the fabrication of space-variant birefringent optics with high thermal and chemical durability and high optical damage threshold. However, a drawback is the optical loss due to the light scattering by nanograting structures, which has limited the application. Here, we report a new type of ultrafast laser-induced modification in silica glass, which consists of randomly distributed nanopores elongated in the direction perpendicular to the polarization, providing controllable birefringent structures with transmittance as high as 99% in the visible and near-infrared ranges and >90% in the UV range down to 330 nm. The observed anisotropic nanoporous silica structures are fundamentally different from the femtosecond laser-induced nanogratings and conventional nanoporous silica. A mechanism of nanocavitation via interstitial oxygen generation mediated by multiphoton and avanlanche defect ionization is proposed. We demonstrate ultralow-loss geometrical phase optical elements, including geometrical phase prism and lens, and a vector beam convertor in silica glass.
通过空间可变各向异性实现的偏振和几何相位整形,在制造平面光学元件以及生成矢量光束方面引起了广泛关注,这些应用在科学技术的各个领域都有体现。在各向异性图案化的方法中,利用飞秒激光写入在石英玻璃中对自组装纳米光栅结构进行压印,有望制造出具有高热稳定性、化学耐久性以及高光损伤阈值的空间可变双折射光学器件。然而,一个缺点是由于纳米光栅结构引起的光散射导致的光学损耗,这限制了其应用。在此,我们报道了一种新型的石英玻璃中超快激光诱导改性,它由沿垂直于偏振方向拉长的随机分布纳米孔组成,可提供可控的双折射结构,在可见光和近红外范围内透过率高达99%,在紫外范围低至330 nm时透过率大于90%。所观察到的各向异性纳米多孔石英结构与飞秒激光诱导的纳米光栅以及传统纳米多孔石英有着本质区别。我们提出了一种通过多光子和雪崩缺陷电离介导的间隙氧生成实现纳米空化的机制。我们展示了超低损耗的几何相位光学元件,包括几何相位棱镜和透镜,以及石英玻璃中的矢量光束转换器。