Mu Haoran, Smith Daniel, Ng Soon Hock, Anand Vijayakumar, Le Nguyen Hoai An, Dharmavarapu Raghu, Khajehsaeidimahabadi Zahra, Richardson Rachael T, Ruther Patrick, Stoddart Paul R, Gricius Henrikas, Baravykas Tomas, Gailevičius Darius, Seniutinas Gediminas, Katkus Tomas, Juodkazis Saulius
Optical Sciences Centre, ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Clayton, VIC 3168, Australia.
Nanomaterials (Basel). 2024 Jan 30;14(3):287. doi: 10.3390/nano14030287.
Emerging applications of optical technologies are driving the development of miniaturised light sources, which in turn require the fabrication of matching micro-optical elements with sub-1 mm cross-sections and high optical quality. This is particularly challenging for spatially constrained biomedical applications where reduced dimensionality is required, such as endoscopy, optogenetics, or optical implants. Planarisation of a lens by the Fresnel lens approach was adapted for a conical lens (axicon) and was made by direct femtosecond 780 nm/100 fs laser writing in the SZ2080™ polymer with a photo-initiator. Optical characterisation of the positive and negative fraxicons is presented. Numerical modelling of fraxicon optical performance under illumination by incoherent and spatially extended light sources is compared with the ideal case of plane-wave illumination. Considering the potential for rapid replication in soft polymers and resists, this approach holds great promise for the most demanding technological applications.
光学技术的新兴应用正在推动小型化光源的发展,这反过来又需要制造横截面小于1毫米且具有高光学质量的匹配微光学元件。对于需要降低尺寸的空间受限生物医学应用,如内窥镜检查、光遗传学或光学植入物,这尤其具有挑战性。通过菲涅耳透镜方法对透镜进行平面化处理,使其适用于圆锥透镜(轴棱锥),并通过在含有光引发剂的SZ2080™聚合物中进行直接飞秒780纳米/100飞秒激光写入来制造。文中展示了正、负分数阶轴棱锥的光学特性。将非相干和空间扩展光源照明下分数阶轴棱锥光学性能的数值模拟与平面波照明的理想情况进行了比较。考虑到在软聚合物和光刻胶中快速复制的潜力,这种方法在最苛刻的技术应用中具有很大的前景。