Suppr超能文献

利用机器学习从 EEG 信号中揭示群体向量。

Using machine learning to reveal the population vector from EEG signals.

机构信息

Institute of Neural Engineering, Graz University of Technology, Graz, Styria 8010, Austria. These authors contributed equally.

出版信息

J Neural Eng. 2020 Mar 10;17(2):026002. doi: 10.1088/1741-2552/ab7490.

Abstract

OBJECTIVE

Since the discovery of the population vector that directly relates neural spiking activity with arm movement direction, it has become feasible to control robotic arms and neuroprostheses using invasively recorded brain signals. For non-invasive approaches, a direct relation between human brain signals and arm movement direction is yet to be established.

APPROACH

Here, we investigated electroencephalographic (EEG) signals in temporal and spectral domains in a continuous, circular arm movement task. Using machine learning methods that respect the linear mixture of brain activity within EEG signals, we show that directional information is represented in the temporal domain in amplitude modulations of the same frequency as the arm movement, and in the spectral domain in power modulations of the 20-24 Hz frequency band.

MAIN RESULTS

In the temporal domain, the directional information was mainly expressed in primary sensorimotor cortex (SM1) and posterior parietal cortex (PPC) contralateral to the moving arm, while in the spectral domain SM1 and PPC of both hemispheres predicted arm movement direction. The different cortical representations suggest distinct neural representations in both domains.

SIGNIFICANCE

This direct relation between neural activity and arm movement direction in both domains demonstrates the potential of machine learning to reveal neuroscientific insights about the dynamics of human arm movements.

摘要

目的

自发现与手臂运动方向直接相关的神经放电活动的群体矢量以来,使用侵入性记录的脑信号来控制机器人手臂和神经假体已经成为可能。对于非侵入性方法,仍然需要建立人类大脑信号与手臂运动方向之间的直接关系。

方法

在这里,我们在连续的圆形手臂运动任务中研究了时域和频域的脑电图(EEG)信号。使用尊重 EEG 信号中脑活动的线性混合的机器学习方法,我们表明,方向信息以与手臂运动相同频率的振幅调制的形式在时域中表示,并且在频谱域中以 20-24 Hz 频带的功率调制表示。

主要结果

在时域中,方向性信息主要在与运动手臂相对侧的初级感觉运动皮层(SM1)和顶后皮质(PPC)中表达,而在频谱域中,两个半球的 SM1 和 PPC 都预测了手臂运动的方向。不同的皮质表示表明在两个域中都存在不同的神经表示。

意义

这两个域中神经活动与手臂运动方向之间的直接关系表明,机器学习具有揭示有关人类手臂运动动力学的神经科学见解的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验