Suppr超能文献

深时演化的钒的氧化还原化学和生物可利用性。

The evolving redox chemistry and bioavailability of vanadium in deep time.

机构信息

Department of Environmental Science, School of Earth and the Environment, Rowan University, Glassboro, NJ, USA.

University of Lyon, Université Lyon 1, Ens de Lyon, CNRS, Villeurbanne, France.

出版信息

Geobiology. 2020 Mar;18(2):127-138. doi: 10.1111/gbi.12375. Epub 2020 Feb 12.

Abstract

The incorporation of metal cofactors into protein active sites and/or active regions expanded the network of microbial metabolism during the Archean eon. The bioavailability of crucial metal cofactors is largely influenced by earth surface redox state, which impacted the timing of metabolic evolution. Vanadium (V) is a unique element in geo-bio-coevolution due to its complex redox chemistry and specific biological functions. Thus, the extent of microbial V utilization potentially represents an important link between the geo- and biospheres in deep time. In this study, we used geochemical modeling and network analysis to investigate the availability and chemical speciation of V in the environment, and the emergence and changing chemistry of V-containing minerals throughout earth history. The redox state of V shifted from a more reduced V(III) state in Archean aqueous geochemistry and mineralogy to more oxidized V(IV) and V(V) states in the Proterozoic and Phanerozoic. The weathering of vanadium sulfides, vanadium alkali metal minerals, and vanadium alkaline earth metal minerals were potential sources of V to the environment and microbial utilization. Community detection analysis of the expanding V mineral network indicates tectonic and redox influence on the distribution of V mineral-forming elements. In reducing environments, energetic drivers existed for V to potentially be involved in early nitrogen fixation, while in oxidizing environments vanadate ( ) could have acted as a metabolic electron acceptor and phosphate mimicking enzyme inhibitor. The coevolving chemical speciation and biological functions of V due to earth's changing surface redox conditions demonstrate the crucial links between the geosphere and biosphere in the evolution of metabolic electron transfer pathways and biogeochemical cycles from the Archean to Phanerozoic.

摘要

金属辅因子与蛋白质活性位点和/或活性区域的结合,在太古宙时期扩展了微生物代谢的网络。关键金属辅因子的生物利用度在很大程度上受地球表面氧化还原状态的影响,而这又影响了代谢进化的时间。钒 (V) 是地质-生物-协同进化中的一个独特元素,因为它具有复杂的氧化还原化学性质和特定的生物学功能。因此,微生物对 V 的利用程度可能代表了深时地质圈和生物圈之间的一个重要联系。在这项研究中,我们使用地球化学模型和网络分析来研究环境中 V 的可用性和化学形态,以及整个地球历史中含 V 矿物的出现和化学变化。V 的氧化还原状态从太古宙水地球化学和矿物学中的更还原的 V(III)状态转变为元古代和显生宙中的更氧化的 V(IV)和 V(V)状态。钒硫化物、钒碱金属矿物和钒碱土金属矿物的风化是 V 向环境和微生物利用的潜在来源。不断扩大的 V 矿物网络的社区检测分析表明,构造和氧化还原对 V 矿物形成元素的分布有影响。在还原环境中,V 可能有参与早期固氮的能量驱动力,而在氧化环境中,钒酸盐 ( ) 可以作为代谢电子受体和磷酸类似酶抑制剂。由于地球表面氧化还原条件的变化,V 的协同进化化学形态和生物学功能表明,在从太古宙到显生宙的代谢电子转移途径和生物地球化学循环的演化过程中,地质圈和生物圈之间存在着至关重要的联系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验