Moore Eli K, Martinez Daniella L, Srivastava Naman, Morrison Shaunna M, Spielman Stephanie J
Department of Environmental Science, School of Earth and the Environment, Rowan University, Glassboro, NJ 08028, USA.
Department of Biological Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
Life (Basel). 2022 Jun 24;12(7):951. doi: 10.3390/life12070951.
The geosphere of primitive Earth was the source of life's essential building blocks, and the geochemical interactions among chemical elements can inform the origins of biological roles of each element. Minerals provide a record of the fundamental properties that each chemical element contributes to crustal composition, evolution, and subsequent biological utilization. In this study, we investigate correlations between the mineral species and bulk crustal composition of each chemical element. There are statistically significant correlations between the number of elements that each element forms minerals with (#-mineral-elements) and the log of the number of mineral species that each element occurs in, and between #-mineral-elements and the log of the number of mineral localities of that element. There is a lesser correlation between the log of the crustal percentage of each element and #-mineral-elements. In the crustal percentage vs. #-mineral-elements plot, positive outliers have either important biological roles (S, Cu) or toxic biological impacts (Pb, As), while negative outliers have no biological importance (Sc, Ga, Br, Yb). In particular, S is an important bridge element between organic (e.g., amino acids) and inorganic (metal cofactors) biological components. While C and N rarely form minerals together, the two elements commonly form minerals with H, which coincides with the role of H as an electron donor/carrier in biological nitrogen and carbon fixation. Both abundant crustal percentage vs. #-mineral-elements insiders (elements that follow the correlation) and less abundant outsiders (positive outliers from the correlation) have important biological functions as essential structural elements and catalytic cofactors.
原始地球的岩石圈是生命基本构成要素的来源,化学元素之间的地球化学相互作用可以揭示每种元素生物学作用的起源。矿物记录了每种化学元素对地壳组成、演化及后续生物利用所贡献的基本特性。在本研究中,我们调查了矿物种类与每种化学元素的地壳总体组成之间的相关性。每种元素形成矿物的元素数量(#-矿物-元素)与该元素所在矿物种类数量的对数之间,以及#-矿物-元素与该元素矿物产地数量的对数之间存在统计学上的显著相关性。每种元素的地壳百分比的对数与#-矿物-元素之间的相关性较小。在地壳百分比与#-矿物-元素的关系图中,正异常值要么具有重要的生物学作用(硫、铜),要么具有有害的生物学影响(铅、砷),而负异常值则没有生物学重要性(钪、镓、溴、镱)。特别是,硫是有机(如氨基酸)和无机(金属辅因子)生物成分之间的重要桥梁元素。虽然碳和氮很少共同形成矿物,但这两种元素通常与氢形成矿物,这与氢在生物固氮和固碳中作为电子供体/载体的作用相吻合。地壳百分比与#-矿物-元素关系中的丰富内部元素(遵循相关性的元素)和较少丰富的外部元素(相关性中的正异常值)作为基本结构元素和催化辅因子都具有重要的生物学功能。