Wang Deng, Li Wenjing, Du Zhenbo, Li Guodong, Sun Weihai, Wu Jihuai, Lan Zhang
Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Fujian Key Laboratory of Photoelectric Functional Materials; Fujian Engineering Research Center of Green Functional Materials; Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, P. R. China.
College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China.
ACS Appl Mater Interfaces. 2020 Mar 4;12(9):10579-10587. doi: 10.1021/acsami.9b23384. Epub 2020 Feb 25.
Improving stability is a major aspect for commercial application of perovskite solar cells (PSCs). The all-inorganic CsPbBr perovskite material has been proven to have excellent stability. However, the CsPbBr film has a small range of light absorption and serious charge recombination at the interface or inside the device, so the power conversion efficiency is still lower than that of the organic-inorganic hybrid one. Here, we successfully fabricate high-quality CsPbBr films via additive engineering with NHSCN. By incorporating NH and pseudo-halide ion SCN into the precursor solution, a smooth and dense CsPbBr film with good crystallinity and low trap state density can be obtained. At the same time, the results of a series of photoluminescence and electrochemical analyses including electrical impedance spectroscopy, space-charge limited current method, Mott-Schottky data, and so on reveal that the NHSCN additive can greatly reduce the trap state density of the CsPbBr film and also effectively inhibit interface recombination and promote charge transport in the CsPbBr planar PSC. Finally, the CsPbBr planar PSC prepared with a molar ratio of 1.5% NHSCN achieves a champion efficiency of 8.47%, higher than that of the pure one (7.12%).
提高稳定性是钙钛矿太阳能电池(PSCs)商业应用的一个主要方面。全无机CsPbBr钙钛矿材料已被证明具有出色的稳定性。然而,CsPbBr薄膜的光吸收范围较小,且在器件界面或内部存在严重的电荷复合现象,因此其功率转换效率仍低于有机-无机杂化钙钛矿太阳能电池。在此,我们通过使用NHSCN进行添加剂工程成功制备了高质量的CsPbBr薄膜。通过将NH和拟卤离子SCN引入前驱体溶液中,可以获得具有良好结晶性和低陷阱态密度的光滑致密的CsPbBr薄膜。同时,包括电化学阻抗谱、空间电荷限制电流法、莫特-肖特基数据等在内的一系列光致发光和电化学分析结果表明,NHSCN添加剂可以大大降低CsPbBr薄膜的陷阱态密度,还能有效抑制界面复合并促进CsPbBr平面PSC中的电荷传输。最终,以1.5%的NHSCN摩尔比制备的CsPbBr平面PSC实现了8.47%的最高效率,高于纯CsPbBr平面PSC的效率(7.12%)。