Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
School of Medicine & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany.
JAMA Psychiatry. 2020 Jun 1;77(6):628-636. doi: 10.1001/jamapsychiatry.2019.4792.
Schizophrenia is a severe mental disorder in which epigenetic mechanisms may contribute to illness risk. Epigenetic profiles can be derived from blood cells, but to our knowledge, it is unknown whether these predict established brain alterations associated with schizophrenia.
To identify an epigenetic signature (quantified as polymethylation score [PMS]) of schizophrenia using machine learning applied to genome-wide blood DNA-methylation data; evaluate whether differences in blood-derived PMS are mirrored in data from postmortem brain samples; test whether the PMS is associated with alterations of dorsolateral prefrontal cortex hippocampal (DLPFC-HC) connectivity during working memory in healthy controls (HC); explore the association between interactions between polygenic and epigenetic risk with DLPFC-HC connectivity; and test the specificity of the signature compared with other serious psychiatric disorders.
DESIGN, SETTING, AND PARTICIPANTS: In this case-control study conducted from 2008 to 2018 in sites in Germany, the United Kingdom, the United States, and Australia, blood DNA-methylation data from 2230 whole-blood samples from 6 independent cohorts comprising HC (1238 [55.5%]) and participants with schizophrenia (803 [36.0%]), bipolar disorder (39 [1.7%]), major depressive disorder 35 [1.6%]), and autism (27 [1.2%]), and first-degree relatives of all patient groups (88 [3.9%]) were analyzed. DNA-methylation data were further explored from 244 postmortem DLPFC samples from 136 HC and 108 patients with schizophrenia. Neuroimaging and genome-wide association data were available for 393 HC. The latter data was used to calculate a polygenic risk score (PRS) for schizophrenia. The data were analyzed in 2019.
The accuracy of schizophrenia control classification based on machine learning using epigenetic data; association of schizophrenia PMS scores with DLPFC-HC connectivity; and association of the interaction between PRS and PMS with DLPFC-HC connectivity.
This study included 7488 participants (4395 men [58.7%]), of whom 3158 (2230 men [70.6%]) received a diagnosis of schizophrenia. The PMS signature was associated with schizophrenia across 3 independent data sets (area under the curve [AUC] from 0.69 to 0.78; P value from 0.049 to 1.24 × 10-7) and data from postmortem DLPFC samples (AUC = 0.63; P = 1.42 × 10-4), but not with major depressive disorder (AUC = 0.51; P = .16), autism (AUC = 0.53; P = .66), or bipolar disorder (AUC = 0.58; P = .21). Pathways contributing most to the classification included synaptic processes. Healthy controls with schizophrenia-like PMS showed significantly altered DLPFC-HC connectivity (validation methylation/magnetic resonance imaging, t < -3.81; P for familywise error, <.04; validation magnetic resonance imaging, t < -3.54; P for familywise error, <.02), mirroring the lack of functional decoupling in schizophrenia. There was no significant association of the interaction between PMS and PRS with DLPFC-HC connectivity (P > .19).
We identified a reproducible blood DNA-methylation signature specific for schizophrenia that was correlated with altered functional DLPFC-HC coupling during working memory and mapped to methylation differences found in DLPFC postmortem samples. This indicates a possible epigenetic contribution to a schizophrenia intermediate phenotype and suggests that PMS could be of interest to be studied in the context of multimodal biomarkers for disease stratification and treatment personalization.
重要性:精神分裂症是一种严重的精神疾病,其中表观遗传机制可能导致疾病风险。表观遗传谱可以从血细胞中得出,但据我们所知,目前尚不清楚这些谱是否可以预测与精神分裂症相关的已建立的大脑改变。
目的:使用机器学习应用于全基因组血液 DNA 甲基化数据,确定精神分裂症的表观遗传特征(定量为多甲基化评分[PMS]);评估血液衍生的 PMS 差异是否在死后大脑样本数据中得到反映;测试 PMS 是否与健康对照者(HC)工作记忆期间背外侧前额叶-海马(DLPFC-HC)连接的改变相关;探索多基因和表观遗传风险与 DLPFC-HC 连接之间相互作用的相关性;并比较该特征与其他严重精神疾病的特异性。
设计、地点和参与者:本病例对照研究于 2008 年至 2018 年在德国、英国、美国和澳大利亚的多个地点进行,分析了来自 6 个独立队列的 2230 个全血样本的血液 DNA 甲基化数据,包括 HC(1238 [55.5%])和精神分裂症患者(803 [36.0%])、双相情感障碍(39 [1.7%])、重度抑郁症(35 [1.6%])和自闭症(27 [1.2%]),以及所有患者组的一级亲属(88 [3.9%])。进一步探索了来自 136 名 HC 和 108 名精神分裂症患者的 244 个死后 DLPFC 样本的 DNA 甲基化数据。393 名 HC 有神经影像学和全基因组关联数据。后一组数据用于计算精神分裂症的多基因风险评分(PRS)。数据分析于 2019 年进行。
主要结果和措施:基于机器学习使用表观遗传数据对精神分裂症控制分类的准确性;精神分裂症 PMS 评分与 DLPFC-HC 连接的关联;以及 PRS 和 PMS 之间相互作用与 DLPFC-HC 连接的关联。
结果:本研究纳入了 7488 名参与者(4395 名男性[58.7%]),其中 3158 名(2230 名男性[70.6%])被诊断为精神分裂症。PMS 特征与 3 个独立数据集(曲线下面积[AUC]为 0.69 至 0.78;P 值为 0.049 至 1.24×10-7)和死后 DLPFC 样本数据(AUC=0.63;P=1.42×10-4)相关,但与重度抑郁症(AUC=0.51;P=0.16)、自闭症(AUC=0.53;P=0.66)或双相情感障碍(AUC=0.58;P=0.21)无关。对分类贡献最大的途径包括突触过程。具有精神分裂症样 PMS 的健康对照者表现出明显改变的 DLPFC-HC 连接(验证性甲基化/磁共振成像,t<−3.81;P 值<0.04;验证性磁共振成像,t<−3.54;P 值<0.02),反映了精神分裂症中缺乏功能解耦。PMS 和 PRS 之间相互作用与 DLPFC-HC 连接无显著相关性(P>0.19)。
结论和相关性:我们确定了一种可重复的精神分裂症血液 DNA 甲基化特征,与工作记忆期间 DLPFC-HC 功能连接的改变相关,并与死后 DLPFC 样本中发现的甲基化差异相对应。这表明精神分裂症中间表型可能存在表观遗传贡献,并表明 PMS 可能在疾病分层和治疗个体化的多模态生物标志物研究中具有研究价值。