Suppr超能文献

高通量筛选工具有助于计算具有内分泌活性的化学物质的综合暴露-生物活性指数。

High-throughput screening tools facilitate calculation of a combined exposure-bioactivity index for chemicals with endocrine activity.

机构信息

Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States; Office of Science Coordination and Policy, Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC, United States.

Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States; Office of Science Coordination and Policy, Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC, United States.

出版信息

Environ Int. 2020 Apr;137:105470. doi: 10.1016/j.envint.2020.105470. Epub 2020 Feb 9.

Abstract

High-throughput and computational tools provide a new opportunity to calculate combined bioactivity of exposure to diverse chemicals acting through a common mechanism. We used high throughput in vitro bioactivity data and exposure predictions from the U.S. EPA's Toxicity and Exposure Forecaster (ToxCast and ExpoCast) to estimate combined estrogen receptor (ER) agonist activity of non-pharmaceutical chemical exposures for the general U.S. population. High-throughput toxicokinetic (HTTK) data provide conversion factors that relate bioactive concentrations measured in vitro (µM), to predicted population geometric mean exposure rates (mg/kg/day). These data were available for 22 chemicals with ER agonist activity and were estimated for other ER bioactive chemicals based on the geometric mean of HTTK values across chemicals. For each chemical, ER bioactivity across ToxCast assays was compared to predicted population geometric mean exposure at different levels of in vitro potency and model certainty. Dose additivity was assumed in calculating a Combined Exposure-Bioactivity Index (CEBI), the sum of exposure/bioactivity ratios. Combined estrogen bioactivity was also calculated in terms of the percent maximum bioactivity of chemical mixtures in human plasma using a concentration-addition model. Estimated CEBIs vary greatly depending on assumptions used for exposure and bioactivity. In general, CEBI values were <1 when using median of the estimated general population chemical intake rates, while CEBI were ≥1 when using the upper 95th confidence bound for those same intake rates for all chemicals. Concentration-addition model predictions of mixture bioactivity yield comparable results. Based on current in vitro bioactivity data, HTTK methods, and exposure models, combined exposure scenarios sufficient to influence estrogen bioactivity in the general population cannot be ruled out. Future improvements in screening methods and computational models could reduce uncertainty and better inform the potential combined effects of estrogenic chemicals.

摘要

高通量和计算工具为通过共同机制作用的多种化学物质暴露的联合生物活性计算提供了新的机会。我们使用来自美国环保署毒性和暴露预测器(ToxCast 和 ExpoCast)的高通量体外生物活性数据和暴露预测,估算了普通美国人群中非药物化学暴露的雌激素受体(ER)激动剂活性的综合作用。高通量毒代动力学(HTTK)数据提供了将体外测量的生物活性浓度(µM)转换为预测的人群几何平均暴露率(mg/kg/天)的转换因子。这些数据可用于具有 ER 激动剂活性的 22 种化学物质,并根据跨化学物质的 HTTK 值的几何平均值估算其他具有 ER 生物活性的化学物质。对于每种化学物质,在不同的体外效力和模型确定性水平下,ToxCast 测定中的 ER 生物活性与预测的人群几何平均暴露进行了比较。在计算综合暴露-生物活性指数(CEBI)时,假设剂量加性,即暴露/生物活性比的总和。还使用浓度加和模型,根据人类血浆中化学混合物的最大生物活性的百分比,计算了综合雌激素生物活性。CEBI 值取决于暴露和生物活性的假设,变化很大。一般来说,当使用估计的普通人群化学摄入量中位数时,CEBI 值<1,而当使用相同摄入量的 95%置信上限时,CEBI 值≥1。混合物生物活性的浓度加和模型预测产生可比的结果。基于当前的体外生物活性数据、HTTK 方法和暴露模型,不能排除足以影响普通人群中雌激素生物活性的综合暴露情况。筛选方法和计算模型的未来改进可以降低不确定性,并更好地告知雌激素化学物质的潜在综合效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b02a/7717552/7ee328fe01a4/nihms-1647192-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验