Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles, Spain.
cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Alameda da Universidade, 1649-004 Campo Grande, Lisboa, Portugal.
Sci Total Environ. 2020 Apr 10;712:136533. doi: 10.1016/j.scitotenv.2020.136533. Epub 2020 Jan 7.
Adopting an integrative approach that explicitly includes the different facets of biodiversity is crucial to assess the response of biological communities to changing environments. The identification of the optimal climatic conditions where communities maximize their functional, phylogenetic and taxonomic diversity is useful to compare whether the optima of the different facets of biodiversity match. Using a wide climatic gradient across Europe, we quantified the functional, phylogenetic and taxonomic diversity of epiphytic macrolichen communities, which are valuable early-warning ecological indicators. We ordinated 22 environmental variables and simultaneously illustrated non-parametric regressions of the diversity metrics against the climatic space using the 'hilltop plot' method to detect the climatic conditions in which the different diversity facets peaked and to compare the match between them. Functional diversity predicted at least part of the peaks of phylogenetic and taxonomic diversity, but phylogenetic and taxonomic hotspots did not overlap. Epiphytic macrolichen communities maximized their functional and phylogenetic diversity in the southernmost forests, with the Mediterranean region appearing as a biodiversity hotspot. Regarding the studied traits, photobiont type and growth form showed clearly defined optima while the quantitative physiological traits and families' optima did not show this pattern in response to climate. The different facets of biodiversity were not surrogates of each other highlighting the need for an integrative approach to assess the effect of environmental changes on communities and to establish conservation priorities. As functional traits mediated the response of lichen communities to climate, preserving high functional diversity might indirectly preserve high phylogenetic and taxonomic diversity. Relevant ecological indicators useful to develop rapid assessment methods to evaluate the effects of climatic changes include the photobiont type and growth form. The lack of relation between quantitative traits and climate call for further research to unveil their role as ecological indicators of small-scale variables or as effect traits.
采用综合方法明确包含生物多样性的不同方面对于评估生物群落对环境变化的响应至关重要。确定生物群落的功能、系统发育和分类多样性最大化的最佳气候条件,有助于比较不同生物多样性方面的最优条件是否匹配。本研究利用欧洲广泛的气候梯度,量化了附生大型地衣群落的功能、系统发育和分类多样性,这些群落是有价值的早期预警生态指标。我们对 22 个环境变量进行了排序,并同时使用“山顶图”方法将多样性指标与气候空间的非参数回归进行了说明,以检测不同多样性方面达到峰值的气候条件,并比较它们之间的匹配情况。功能多样性至少可以预测系统发育和分类多样性的部分峰值,但系统发育和分类热点并不重叠。附生大型地衣群落的功能和系统发育多样性在最南端的森林中达到最大值,地中海地区是生物多样性热点。就所研究的特征而言,共生藻类型和生长形式表现出明显的最优值,而定量生理特征和科的最优值则没有表现出这种模式,它们对气候的响应没有表现出这种模式。不同的生物多样性方面不能相互替代,这突显了采用综合方法评估环境变化对群落的影响并确定保护重点的必要性。由于功能特征介导了地衣群落对气候的响应,因此保留高功能多样性可能会间接保留高系统发育和分类多样性。有用的相关生态指标可用于开发快速评估方法来评估气候变化的影响,包括共生藻类型和生长形式。定量特征与气候之间缺乏关系,需要进一步研究以揭示它们作为小尺度变量的生态指标或作为效应特征的作用。