Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
Nat Protoc. 2020 Mar;15(3):750-772. doi: 10.1038/s41596-019-0247-2. Epub 2020 Feb 12.
Single-cell technologies are offering unparalleled insight into complex biology, revealing the behavior of rare cell populations that are masked in bulk population analyses. One current limitation of single-cell approaches is that lineage relationships are typically lost as a result of cell processing. We recently established a method, CellTagging, permitting the parallel capture of lineage information and cell identity via a combinatorial cell indexing approach. CellTagging integrates with high-throughput single-cell RNA sequencing, where sequential rounds of cell labeling enable the construction of multi-level lineage trees. Here, we provide a detailed protocol to (i) generate complex plasmid and lentivirus CellTag libraries for labeling of cells; (ii) sequentially CellTag cells over the course of a biological process; (iii) profile single-cell transcriptomes via high-throughput droplet-based platforms; and (iv) generate a CellTag expression matrix, followed by clone calling and lineage reconstruction. This lentiviral-labeling approach can be deployed in any organism or in vitro culture system that is amenable to viral transduction to simultaneously profile lineage and identity at single-cell resolution.
单细胞技术为深入研究复杂生物学提供了前所未有的视角,揭示了在大规模群体分析中被掩盖的稀有细胞群体的行为。单细胞方法的一个当前限制是,由于细胞处理,谱系关系通常会丢失。我们最近建立了一种方法,CellTagging,通过组合细胞索引方法,允许并行捕获谱系信息和细胞身份。CellTagging 与高通量单细胞 RNA 测序相结合,其中细胞标记的连续轮次允许构建多层次的谱系树。在这里,我们提供了一个详细的方案,用于:(i)生成用于标记细胞的复杂质粒和慢病毒 CellTag 文库;(ii)在生物过程中顺序 CellTag 细胞;(iii)通过高通量基于液滴的平台对单细胞转录组进行分析;以及(iv)生成 CellTag 表达矩阵,然后进行克隆调用和谱系重建。这种慢病毒标记方法可以部署在任何适合病毒转导的生物体或体外培养系统中,以在单细胞分辨率下同时分析谱系和身份。