Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Inorg Chem. 2020 Mar 2;59(5):3012-3025. doi: 10.1021/acs.inorgchem.9b03368. Epub 2020 Feb 13.
Metal-organic frameworks (MOFs) show a distinctive pre-eminence over other heterogeneous systems for adsorption of carbon dioxide (CO) gas and fluorescence detection of water contaminating ions, where integration of both these attributes along with enhancement of pore functionality and water stability is crucial for potential applications related to environmental remediation. Pore functionalization has been achieved in a 2-fold interpenetrated, mixed-ligand Cd(II)-framework [Cd()()(NO)]·2DMF·2HO () (H = 4-(4-carboxyphenyl)-1,2,4-triazole, = 4,4'-bipyridine, DMF = dimethylformamide, CSMCRI = Central Salt & Marine Chemicals Research Institute) by utilizing a bifunctional ligand H. The -pillared framework, containing diverse Cd(II) nodes, optimum sized voids, and free N-atom affixed one-dimensional porous channels, shows notable structural robustness in diverse organic solvents and water. In spite of a negligible surface area, the activated MOF () exhibits good CO uptake and highly selective CO adsorption over N (259.94) and CH (14.34) alongside minor loss during multiple CO adsorption-desorption cycles. Luminescence studies demonstrate extremely selective and ultrafast sensing of Fe ions in the aqueous phase with notable quenching (1.13 × 10 M) as well as an impressive 98 ppb limit of detection (LOD). Importantly, Fe detection is exclusively retained under simulated physiological conditions. The framework further serves as a quick-responsive scaffold for toxic CrO and CrO anions, where individual quenching constants (CrO: 1.73 × 10 M; CrO: 5.42 × 10 M) and LOD values (CrO: 280 ppb; CrO: 320 ppb) rank among the best sensory MOFs for aqueous phase detection of Cr(VI) species. It is imperative to stress vivid monitoring of all these aqueous pollutants by a handy paper-strip method, besides outstanding applicability of toward their recyclable detection. Mechanism of selective quenching is comprehensively investigated in light of the absorption of the excitation/emission energy of the host framework by an individual studied analyte.
金属有机骨架(MOFs)在吸附二氧化碳(CO)气体和荧光检测水中污染离子方面表现出明显优于其他多相体系的优势,其中,这两种特性的结合以及增强孔功能和水稳定性对于与环境修复相关的潜在应用至关重要。在一个 2 倍互穿的、混合配体 Cd(II)-骨架 [Cd()()(NO)]·2DMF·2HO ()(H = 4-(4-羧基苯基)-1,2,4-三唑, = 4,4'-联吡啶,DMF = 二甲基甲酰胺,CSMCRI = 中央盐与海洋化学品研究所)中,通过利用双功能配体 H 实现了孔功能化。该 - 支撑骨架包含不同的 Cd(II)节点、最佳尺寸的空隙和固定的一维多孔通道中的 N 原子,在各种有机溶剂和水中显示出显著的结构稳定性。尽管比表面积很小,但活化的 MOF () 表现出对 CO 的良好吸收和对 N (259.94)和 CH (14.34)的高度选择性吸附,以及在多次 CO 吸附-解吸循环过程中轻微的损失。荧光研究表明,该骨架在水相中对 Fe 离子具有极其选择性和超快的传感能力,具有显著的猝灭(1.13 × 10 M)以及令人印象深刻的 98 ppb 检测限(LOD)。重要的是,在模拟生理条件下,Fe 检测仍然保留。该骨架进一步作为快速响应支架,用于有毒的 CrO 和 CrO 阴离子,其中单个猝灭常数(CrO:1.73 × 10 M;CrO:5.42 × 10 M)和 LOD 值(CrO:280 ppb;CrO:320 ppb)在水相中检测 Cr(VI)物种的最佳感应 MOFs 中名列前茅。值得强调的是,除了对其可回收检测的出色适用性外,通过简便的纸带方法生动地监测所有这些水污染物也是至关重要的。根据主体框架吸收单个研究分析物的激发/发射能量,全面研究了选择性猝灭的机制。