Sakuma Yuka, Kawakatsu Toshihiro, Taniguchi Takashi, Imai Masayuki
Department of Physics, Tohoku University, Sendai, Japan.
Department of Physics, Tohoku University, Sendai, Japan.
Biophys J. 2020 Apr 7;118(7):1576-1587. doi: 10.1016/j.bpj.2020.01.009. Epub 2020 Jan 18.
In cell membranes, the functional constituents such as peptides, proteins, and polysaccharides diffuse in a sea of lipids as single molecules and molecular aggregates. Thus, the fluidity of the heterogeneous multicomponent membrane is important for understanding the roles of the membrane in cell functionality. Recently, Henle and Levine described the hydrodynamics of molecular diffusion in a spherical membrane. A tangential point force at the north pole induces a pair of vortices whose centers lie on a line perpendicular to the point force and are symmetrical with respect to the point force. The position of the vortex center depends on η/Rη, where R is the radius of the spherical membrane, and η and η are the viscosities of the membrane and the surrounding medium, respectively. Based on this theoretical prediction, we applied a point force to a phase-separated spherical vesicle composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol by means of a microinjection technique. The pathlines were visualized by trajectories of microdomains. We determined the position of the vortex center and estimated the membrane viscosity using the dependence of the position of the vortex center on η/Rη. The obtained apparent membrane viscosities for various compositions are mapped on the phase diagram. The membrane viscosity is almost constant in the range of 0 <ϕ ≤ 0.5 (ϕ: area fraction of the liquid ordered phase), whereas that in the range of 0.5 ≤ ϕ < 1.0 exponentially increases with increase of ϕ. The obtained viscosity landscape provides a basic understanding of the fluidity of heterogeneous multicomponent membranes.
在细胞膜中,诸如肽、蛋白质和多糖等功能成分以单分子和分子聚集体的形式在脂质海洋中扩散。因此,异质多组分膜的流动性对于理解膜在细胞功能中的作用至关重要。最近,亨勒和莱文描述了球形膜中分子扩散的流体动力学。北极处的切向点力会诱导出一对涡旋,其中心位于垂直于点力的直线上,并且关于点力对称。涡旋中心的位置取决于η/Rη,其中R是球形膜的半径,η和η分别是膜和周围介质的粘度。基于这一理论预测,我们通过显微注射技术对由1,2 - 二棕榈酰 - sn - 甘油 - 3 - 磷酸胆碱/1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸胆碱/胆固醇组成的相分离球形囊泡施加了一个点力。通过微区的轨迹可视化流线。我们确定了涡旋中心的位置,并利用涡旋中心位置对η/Rη的依赖性估计了膜的粘度。将各种组成的所得表观膜粘度绘制在相图上。在0 <ϕ≤0.5(ϕ:液晶有序相的面积分数)范围内,膜粘度几乎恒定,而在0.5≤ϕ<1.0范围内,膜粘度随着ϕ的增加呈指数增加。所得的粘度图谱为异质多组分膜的流动性提供了基本认识。