Suppr超能文献

基于深度学习的全身 CT 人体测量指标对非小细胞肺癌患者预后的预测价值。

Prognostic value of anthropometric measures extracted from whole-body CT using deep learning in patients with non-small-cell lung cancer.

机构信息

Department of Nuclear Medicine, Henri Mondor Hospital/AP-HP, Créteil, F-94010, France.

INSERM IMRB, Team 8, U-PEC, Créteil, F-94000, France.

出版信息

Eur Radiol. 2020 Jun;30(6):3528-3537. doi: 10.1007/s00330-019-06630-w. Epub 2020 Feb 13.

Abstract

INTRODUCTION

The aim of the study was to extract anthropometric measures from CT by deep learning and to evaluate their prognostic value in patients with non-small-cell lung cancer (NSCLC).

METHODS

A convolutional neural network was trained to perform automatic segmentation of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and muscular body mass (MBM) from low-dose CT images in 189 patients with NSCLC who underwent pretherapy PET/CT. After a fivefold cross-validation in a subset of 35 patients, anthropometric measures extracted by deep learning were normalized to the body surface area (BSA) to control the various patient morphologies. VAT/SAT ratio and clinical parameters were included in a Cox proportional-hazards model for progression-free survival (PFS) and overall survival (OS).

RESULTS

Inference time for a whole volume was about 3 s. Mean Dice similarity coefficients in the validation set were 0.95, 0.93, and 0.91 for SAT, VAT, and MBM, respectively. For PFS prediction, T-stage, N-stage, chemotherapy, radiation therapy, and VAT/SAT ratio were associated with disease progression on univariate analysis. On multivariate analysis, only N-stage (HR = 1.7 [1.2-2.4]; p = 0.006), radiation therapy (HR = 2.4 [1.0-5.4]; p = 0.04), and VAT/SAT ratio (HR = 10.0 [2.7-37.9]; p < 0.001) remained significant prognosticators. For OS, male gender, smoking status, N-stage, a lower SAT/BSA ratio, and a higher VAT/SAT ratio were associated with mortality on univariate analysis. On multivariate analysis, male gender (HR = 2.8 [1.2-6.7]; p = 0.02), N-stage (HR = 2.1 [1.5-2.9]; p < 0.001), and the VAT/SAT ratio (HR = 7.9 [1.7-37.1]; p < 0.001) remained significant prognosticators.

CONCLUSION

The BSA-normalized VAT/SAT ratio is an independent predictor of both PFS and OS in NSCLC patients.

KEY POINTS

• Deep learning will make CT-derived anthropometric measures clinically usable as they are currently too time-consuming to calculate in routine practice. • Whole-body CT-derived anthropometrics in non-small-cell lung cancer are associated with progression-free survival and overall survival. • A priori medical knowledge can be implemented in the neural network loss function calculation.

摘要

简介

本研究旨在通过深度学习从 CT 中提取人体测量学指标,并评估其在非小细胞肺癌(NSCLC)患者中的预后价值。

方法

我们训练了一个卷积神经网络,以便从 189 名接受术前 PET/CT 检查的 NSCLC 患者的低剂量 CT 图像中自动分割皮下脂肪组织(SAT)、内脏脂肪组织(VAT)和肌肉体质量(MBM)。在 35 名患者的子集中进行了五重交叉验证后,通过深度学习提取的人体测量学指标被归一化为体表面积(BSA),以控制各种患者形态。VAT/SAT 比和临床参数被纳入无进展生存期(PFS)和总生存期(OS)的 Cox 比例风险模型中。

结果

整个容积的推断时间约为 3 秒。在验证集中,SAT、VAT 和 MBM 的平均 Dice 相似系数分别为 0.95、0.93 和 0.91。在预测 PFS 方面,单变量分析显示 T 分期、N 分期、化疗、放疗和 VAT/SAT 比与疾病进展相关。多变量分析显示,仅 N 分期(HR=1.7[1.2-2.4];p=0.006)、放疗(HR=2.4[1.0-5.4];p=0.04)和 VAT/SAT 比(HR=10.0[2.7-37.9];p<0.001)仍然是显著的预后因素。在 OS 方面,单变量分析显示男性、吸烟状况、N 分期、较低的 SAT/BSA 比和较高的 VAT/SAT 比与死亡率相关。多变量分析显示,男性(HR=2.8[1.2-6.7];p=0.02)、N 分期(HR=2.1[1.5-2.9];p<0.001)和 VAT/SAT 比(HR=7.9[1.7-37.1];p<0.001)仍然是显著的预后因素。

结论

BSA 归一化的 VAT/SAT 比是非小细胞肺癌患者 PFS 和 OS 的独立预测因子。

关键点

• 深度学习将使 CT 衍生的人体测量学指标在临床上可用,因为目前在常规实践中计算这些指标太耗时。• 非小细胞肺癌的全身 CT 衍生人体测量学与无进展生存期和总生存期相关。• 先验医学知识可以在神经网络损失函数的计算中实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验