Department of Nuclear Medicine, Henri Mondor Hospital/AP-HP, Créteil, F-94010, France.
INSERM IMRB, Team 8, U-PEC, Créteil, F-94000, France.
Eur Radiol. 2020 Jun;30(6):3528-3537. doi: 10.1007/s00330-019-06630-w. Epub 2020 Feb 13.
The aim of the study was to extract anthropometric measures from CT by deep learning and to evaluate their prognostic value in patients with non-small-cell lung cancer (NSCLC).
A convolutional neural network was trained to perform automatic segmentation of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and muscular body mass (MBM) from low-dose CT images in 189 patients with NSCLC who underwent pretherapy PET/CT. After a fivefold cross-validation in a subset of 35 patients, anthropometric measures extracted by deep learning were normalized to the body surface area (BSA) to control the various patient morphologies. VAT/SAT ratio and clinical parameters were included in a Cox proportional-hazards model for progression-free survival (PFS) and overall survival (OS).
Inference time for a whole volume was about 3 s. Mean Dice similarity coefficients in the validation set were 0.95, 0.93, and 0.91 for SAT, VAT, and MBM, respectively. For PFS prediction, T-stage, N-stage, chemotherapy, radiation therapy, and VAT/SAT ratio were associated with disease progression on univariate analysis. On multivariate analysis, only N-stage (HR = 1.7 [1.2-2.4]; p = 0.006), radiation therapy (HR = 2.4 [1.0-5.4]; p = 0.04), and VAT/SAT ratio (HR = 10.0 [2.7-37.9]; p < 0.001) remained significant prognosticators. For OS, male gender, smoking status, N-stage, a lower SAT/BSA ratio, and a higher VAT/SAT ratio were associated with mortality on univariate analysis. On multivariate analysis, male gender (HR = 2.8 [1.2-6.7]; p = 0.02), N-stage (HR = 2.1 [1.5-2.9]; p < 0.001), and the VAT/SAT ratio (HR = 7.9 [1.7-37.1]; p < 0.001) remained significant prognosticators.
The BSA-normalized VAT/SAT ratio is an independent predictor of both PFS and OS in NSCLC patients.
• Deep learning will make CT-derived anthropometric measures clinically usable as they are currently too time-consuming to calculate in routine practice. • Whole-body CT-derived anthropometrics in non-small-cell lung cancer are associated with progression-free survival and overall survival. • A priori medical knowledge can be implemented in the neural network loss function calculation.
本研究旨在通过深度学习从 CT 中提取人体测量学指标,并评估其在非小细胞肺癌(NSCLC)患者中的预后价值。
我们训练了一个卷积神经网络,以便从 189 名接受术前 PET/CT 检查的 NSCLC 患者的低剂量 CT 图像中自动分割皮下脂肪组织(SAT)、内脏脂肪组织(VAT)和肌肉体质量(MBM)。在 35 名患者的子集中进行了五重交叉验证后,通过深度学习提取的人体测量学指标被归一化为体表面积(BSA),以控制各种患者形态。VAT/SAT 比和临床参数被纳入无进展生存期(PFS)和总生存期(OS)的 Cox 比例风险模型中。
整个容积的推断时间约为 3 秒。在验证集中,SAT、VAT 和 MBM 的平均 Dice 相似系数分别为 0.95、0.93 和 0.91。在预测 PFS 方面,单变量分析显示 T 分期、N 分期、化疗、放疗和 VAT/SAT 比与疾病进展相关。多变量分析显示,仅 N 分期(HR=1.7[1.2-2.4];p=0.006)、放疗(HR=2.4[1.0-5.4];p=0.04)和 VAT/SAT 比(HR=10.0[2.7-37.9];p<0.001)仍然是显著的预后因素。在 OS 方面,单变量分析显示男性、吸烟状况、N 分期、较低的 SAT/BSA 比和较高的 VAT/SAT 比与死亡率相关。多变量分析显示,男性(HR=2.8[1.2-6.7];p=0.02)、N 分期(HR=2.1[1.5-2.9];p<0.001)和 VAT/SAT 比(HR=7.9[1.7-37.1];p<0.001)仍然是显著的预后因素。
BSA 归一化的 VAT/SAT 比是非小细胞肺癌患者 PFS 和 OS 的独立预测因子。
• 深度学习将使 CT 衍生的人体测量学指标在临床上可用,因为目前在常规实践中计算这些指标太耗时。• 非小细胞肺癌的全身 CT 衍生人体测量学与无进展生存期和总生存期相关。• 先验医学知识可以在神经网络损失函数的计算中实施。