Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States.
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
ACS Nano. 2020 Mar 24;14(3):3703-3717. doi: 10.1021/acsnano.0c00962. Epub 2020 Feb 20.
Engineered nanoparticles could trigger inflammatory responses and potentiate a desired innate immune response for efficient immunotherapy. Here we report size-dependent activation of innate immune signaling pathways by gold (Au) nanoparticles. The ultrasmall-size (<10 nm) Au nanoparticles preferentially activate the NLRP3 inflammasome for Caspase-1 maturation and interleukin-1β production, while the larger-size Au nanoparticles (>10 nm) trigger the NF-κB signaling pathway. Ultrasmall (4.5 nm) Au nanoparticles (Au4.5) activate the NLRP3 inflammasome through directly penetrating into cell cytoplasm to promote robust ROS production and target autophagy protein-LC3 (microtubule-associated protein 1-light chain 3) for proteasomal degradation in an endocytic/phagocytic-independent manner. LC3-dependent autophagy is required for inhibiting NLRP3 inflammasome activation and plays a critical role in the negative control of inflammasome activation. Au4.5 nanoparticles promote the degradation of LC3, thus relieving the LC3-mediated inhibition of the NLRP3 inflammasome. Finally, we show that Au4.5 nanoparticles could function as vaccine adjuvants to markedly enhance ovalbumin (OVA)-specific antibody production in an NLRP3-dependent pattern. Our findings have provided molecular insights into size-dependent innate immune signaling activation by cell-penetrating nanoparticles and identified LC3 as a potential regulatory target for efficient immunotherapy.
工程纳米颗粒可能引发炎症反应,并增强所需的固有免疫反应,从而实现有效的免疫治疗。在这里,我们报告了金(Au)纳米颗粒的大小依赖性固有免疫信号通路的激活。超小尺寸(<10nm)的 Au 纳米颗粒优先激活 NLRP3 炎性小体,促进 Caspase-1 成熟和白细胞介素-1β的产生,而较大尺寸(>10nm)的 Au 纳米颗粒则触发 NF-κB 信号通路。超小(4.5nm)的 Au 纳米颗粒(Au4.5)通过直接穿透细胞质来激活 NLRP3 炎性小体,从而促进强大的 ROS 产生,并以一种非内吞/吞噬依赖的方式靶向自噬蛋白-LC3(微管相关蛋白 1 轻链 3)进行蛋白酶体降解。LC3 依赖性自噬对于抑制 NLRP3 炎性小体的激活是必需的,并且在炎性小体激活的负调控中起着关键作用。Au4.5 纳米颗粒促进 LC3 的降解,从而缓解了 LC3 对 NLRP3 炎性小体的抑制作用。最后,我们表明 Au4.5 纳米颗粒可以作为疫苗佐剂,以 NLRP3 依赖性方式显著增强卵清蛋白(OVA)特异性抗体的产生。我们的研究结果为穿透细胞的纳米颗粒的大小依赖性固有免疫信号激活提供了分子见解,并确定 LC3 是有效免疫治疗的潜在调节靶标。