文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多糖纳米颗粒作为潜在的免疫佐剂:作用机制与功能

Polysaccharide nanoparticles as potential immune adjuvants: Mechanism and function.

作者信息

Jiang Yuhong, Qi Shanshan, Mao Canquan

机构信息

Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.

出版信息

Acta Pharm Sin B. 2025 Apr;15(4):1796-1815. doi: 10.1016/j.apsb.2025.03.006. Epub 2025 Mar 7.


DOI:10.1016/j.apsb.2025.03.006
PMID:40486863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12137980/
Abstract

Adjuvants as essential ingredients amplify the magnitude and durability of immune responses in various vaccine strategies. Polysaccharides with potent immunoenhancing effects are widely applied as promising vaccine adjuvants, however, they have rarely been licensed for use in human vaccines due to the limitation of their efficacy and safety. Moreover, nanoparticles not only act as antigen drug delivery vectors but also possess intrinsic adjuvant functions, revealing the dual effects of nanoparticles in augmenting antigen-specific immune responses. Intriguingly, nanoparticle forms can enhance the immunostimulatory potency of polysaccharide adjuvants, since polysaccharide nanoparticles exert more excellent adjuvant effects than polysaccharides in initiating humoral, cellular and mucosal immune responses. Emerging evidence has also suggested that multiple immune-related signaling pathways including cGAS-STING, NLRP3, TLRs, cell death or metabolism signaling probably participate in the immunomodulation of polysaccharide nanoparticles, but systemic investigations into the adjuvant mechanism are still inadequate. This review aims to give an updated summary and discussion on the adjuvant function and mechanism of polysaccharide nanoparticles for understanding their superior adjuvant property and effectively utilizing them as potent immune adjuvants in vaccine development.

摘要

佐剂作为关键成分,可增强各种疫苗策略中免疫反应的强度和持久性。具有强大免疫增强作用的多糖被广泛用作有前景的疫苗佐剂,然而,由于其有效性和安全性的限制,它们很少被批准用于人类疫苗。此外,纳米颗粒不仅可作为抗原药物递送载体,还具有内在的佐剂功能,揭示了纳米颗粒在增强抗原特异性免疫反应中的双重作用。有趣的是,纳米颗粒形式可增强多糖佐剂的免疫刺激效力,因为多糖纳米颗粒在引发体液免疫、细胞免疫和黏膜免疫反应方面比多糖具有更优异的佐剂效果。新出现的证据还表明,包括cGAS-STING、NLRP3、TLR、细胞死亡或代谢信号在内的多种免疫相关信号通路可能参与多糖纳米颗粒的免疫调节,但对其佐剂机制的系统性研究仍不充分。本综述旨在对多糖纳米颗粒的佐剂功能和机制进行更新总结和讨论,以了解其卓越的佐剂特性,并在疫苗开发中有效地将它们用作强大的免疫佐剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/cd44c8720f72/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/5d745a17ebf4/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/753aed2ea0f7/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/72394411da4d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/99ab7c45326d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/7cb574281c01/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/eb437a54cde4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/d8c3a47a30b8/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/2466bdbcafd9/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/cd44c8720f72/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/5d745a17ebf4/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/753aed2ea0f7/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/72394411da4d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/99ab7c45326d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/7cb574281c01/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/eb437a54cde4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/d8c3a47a30b8/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/2466bdbcafd9/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/12137980/cd44c8720f72/gr8.jpg

相似文献

[1]
Polysaccharide nanoparticles as potential immune adjuvants: Mechanism and function.

Acta Pharm Sin B. 2025-4

[2]
The Distinct Properties of Polysaccharide Nanoparticles Tune Immune Responses against mRNA Antigen via Stimulator of Interferon Genes-Mediated Autophagy and Inflammasome.

ACS Nano. 2023-11-14

[3]
Polysaccharides as vaccine adjuvants.

Vaccine. 2018-7-26

[4]
Lipid nanoparticles as adjuvant of norovirus VLP vaccine augment cellular and humoral immune responses in a TLR9- and type I IFN-dependent pathway.

J Virol. 2024-12-17

[5]
Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant for H9N2 vaccine to improve immune responses in chickens compared to Alum and oil-based adjuvants.

Vet Microbiol. 2020-12

[6]
Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants.

Carbohydr Polym. 2022-1-15

[7]
A MnAl double adjuvant nanovaccine to induce strong humoral and cellular immune responses.

J Control Release. 2023-6

[8]
In Silico-Guided Discovery of Polysaccharide Derivatives as Adjuvants in Nanoparticle Vaccines for Cancer Immunotherapy.

ACS Nano. 2025-1-21

[9]
Chitosan derivative composite nanoparticles as adjuvants enhance the cellular immune response via activation of the cGAS-STING pathway.

Int J Pharm. 2023-4-5

[10]
Synergistic effect of dual targeting vaccine adjuvant with aminated β-glucan and CpG-oligodeoxynucleotides for both humoral and cellular immune responses.

Acta Biomater. 2018-8-9

引用本文的文献

[1]
Dectin-1-targeted pH-responsive liposomal nanoplatform delivering Plantago Asiatica L. acidic polysaccharide for immunomodulation and immunosuppressive breast cancer microenvironment reprogramming.

J Nanobiotechnology. 2025-9-1

[2]
Nanoparticle-Driven Modulation of Mucosal Immunity and Interplay with the Microbiome.

J Microbiol Biotechnol. 2025-6-12

本文引用的文献

[1]
Antigen/adjuvant-free liposome induces adjuvant effects for enhancing cancer immunotherapy.

Exploration (Beijing). 2024-7-17

[2]
Mannan-decorated STING-activating vaccine carrier for spatial coordinative stimulating antigen-specific immune responses.

Fundam Res. 2023-5-11

[3]
-Glucan-modified nanoparticles with different particle sizes exhibit different lymphatic targeting efficiencies and adjuvant effects.

J Pharm Anal. 2024-12

[4]
Inhalable nanoparticles with enhanced cuproptosis and cGAS-STING activation for synergistic lung metastasis immunotherapy.

Acta Pharm Sin B. 2024-8

[5]
Reprogramming the immunosuppressive tumor microenvironment through nanomedicine: an immunometabolism perspective.

EBioMedicine. 2024-9

[6]
Pulmonary delivery of silver nanoparticles prevents influenza infection by recruiting and activating lymphoid cells.

Biomaterials. 2025-1

[7]
The Structural Characterization of a Polysaccharide from the Dried Root of and Its Use as a Vaccine Adjuvant to Induce Humoral and Cellular Immune Responses.

Int J Mol Sci. 2024-7-16

[8]
Surface-Engineered Polygonatum Sibiricum Polysaccharide CaCO Microparticles as Novel Vaccine Adjuvants to Enhance Immune Response.

Mol Pharm. 2024-8-5

[9]
Environment-responsive dendrobium polysaccharide hydrogel embedding manganese microsphere as a post-operative adjuvant to boost cascaded immune cycle against melanoma.

Theranostics. 2024

[10]
Biomarker-driven molecular imaging probes in radiotherapy.

Theranostics. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索