Suppr超能文献

在模拟生理溶液中,通过电子束熔炼制备的细胞结构型医用 Ti-6Al-4V 合金的电化学行为的原位监测。

In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid.

机构信息

Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, PR China.

Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, PR China.

出版信息

Acta Biomater. 2020 Apr 1;106:387-395. doi: 10.1016/j.actbio.2020.02.008. Epub 2020 Feb 11.

Abstract

Ti-6Al-4V alloys with cellular structure fabricated by additive manufacturing are currently of significant interest because their modulus is comparable to bone and the cellular structure allows the cells to penetrate and exchange nutrients, promoting osseointegration. We describe here a unique simulation device that replaces the traditional steady electrochemistry approach, enabling in-situ study of variation of ion concentration and surface potential with pore depth for cellular structured Ti-6Al-4V alloys fabricated by electron beam melting (EBM) in phosphate buffered saline (PBS). This approach addresses the scientific gap on the electrochemical behavior of cellular structured titanium alloys. The study indicated that concentration of H and Cl increased with the increase of pore depth, while the surface potential decreased. The exposed surface of inner cellular structure was not corroded but passivated after immersing in PBS at 37 °C for 14 days, which was independent of pore depth. Furthermore, X-ray photoelectron spectroscopy (XPS) and Mott-Schottky (M-S) studies suggested that a thinner passive film containing a greater donor density was formed on the surface of cellular structured Ti-6Al-4V alloy at the deepest pore depth. This is attributed to insufficient oxygen supply and Cladsorption on the surface inside the pores. STATEMENT OF SIGNIFICANCE: Porous titanium alloys are promising implants in biomedical applications. However, it is a challenge to accurately characterize the corrosion behavior of porous titanium alloys with complex pore structure using traditional electrochemical methods. In this study, we have adopted a special device to simulate the environment within the pore structure. The variation in ion concentration and surface potential of Ti-6Al-4V fabricated by EBM with pore depth was in-situ monitored. After immersing in PBS for 14 days, Ti-6Al-4V exhibited good corrosion properties and the samples with less than 60 mm pore depth were not corroded but passivated. Also, we analyzed the difference in corrosion property at different pore depth. This type of in-situ corrosion performance monitoring in EBM-produced Ti-6Al-4V has not been previously studied.

摘要

具有细胞结构的 Ti-6Al-4V 合金通过增材制造制造,目前受到极大关注,因为其模量与骨骼相当,而细胞结构允许细胞穿透并交换营养物质,促进骨整合。我们在这里描述了一种独特的模拟设备,该设备取代了传统的稳定电化学方法,能够原位研究通过电子束熔化 (EBM) 在磷酸盐缓冲盐水 (PBS) 中制造的具有细胞结构的 Ti-6Al-4V 合金的孔深度随离子浓度和表面电势的变化。这种方法解决了关于细胞结构钛合金的电化学行为的科学空白。研究表明,随着孔深度的增加,H 和 Cl 的浓度增加,而表面电势降低。在 37°C 下将暴露于 PBS 中 14 天后,内部细胞结构的暴露表面没有被腐蚀,而是被钝化,而与孔深度无关。此外,X 射线光电子能谱 (XPS) 和 Mott-Schottky (M-S) 研究表明,在最深孔深度处,在细胞结构 Ti-6Al-4V 合金的表面形成了更薄的含有更大施主密度的钝化膜。这归因于内部孔表面的供氧不足和 Cl 吸附。

意义声明

多孔钛合金在生物医学应用中是很有前途的植入物。然而,使用传统的电化学方法准确地描述具有复杂孔结构的多孔钛合金的腐蚀行为是一项挑战。在这项研究中,我们采用了一种特殊的设备来模拟孔结构内的环境。原位监测 EBM 制造的 Ti-6Al-4V 随孔深度的离子浓度和表面电势的变化。浸入 PBS 14 天后,Ti-6Al-4V 表现出良好的耐腐蚀性,深度小于 60mm 的样品没有被腐蚀而是被钝化。另外,我们分析了不同孔深度下腐蚀性能的差异。这种在 EBM 生产的 Ti-6Al-4V 中进行原位腐蚀性能监测的方法以前没有研究过。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验