Suppr超能文献

利用固态 NMR 光谱法选择性检测片剂制剂中的活性药物成分。

Selective detection of active pharmaceutical ingredients in tablet formulations using solid-state NMR spectroscopy.

机构信息

Nanocrystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, and AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.

Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom.

出版信息

Solid State Nucl Magn Reson. 2020 Apr;106:101651. doi: 10.1016/j.ssnmr.2020.101651. Epub 2020 Jan 28.

Abstract

Atomic-level characterization of active pharmaceutical ingredients (API) is crucial in pharmaceutical industry because APIs play an important role in physicochemical properties of drug formulations. However, the analysis of targeted APIs in intact tablet formulations is less straightforward due to the coexistence of excipients as major components and different APIs at dilute concentrations (often below 10 ​wt% loading). Although solid-state (ss) NMR spectroscopy is widely used to investigate short-range order, polymorphism, and pseudo-polymorphism in neat pharmaceutical compounds, the analysis of complex drug formulations is often limited by overlapped signals that originate from structurally different APIs and excipients. In particular, such examples are frequently encountered in the analysis of H ssNMR spectra of pharmaceutical formulations. While the high-resolution in H ssNMR spectra can be attained by, for example, high magnetic fields accompanied by fast magic-angle spinning (MAS) approaches, the spectral complexity associated with the mixtures of compounds hinders the accurate determination of chemical shifts and through-space proximities. Here we propose a fast MAS (70 ​kHz) NMR experiment for the selective detection of H signals associated with an API from a severely overlapped NMR spectrum of a tablet formulation. Spectral simplification is achieved by combining (i) symmetry-based dipolar recoupling (SR4) rotational-echo saturation-pulse double-resonance (RESPDOR) with phase-modulate (PM) saturation pulses, (ii) radio frequency-driven recoupling (RFDR), and (iii) double-quantum excitation using Back-to-Back (BaBa) pulse sequence elements. First, H sites in close proximities to N nuclei of an API are excited using a PM-S-RESPDOR sequence, and simultaneously, the other unwanted H signals of excipients are suppressed. Then, H magnetization transfer to adjacent H sites in the API is achieved by spin diffusion process using a RFDR sequence, which polarizes to H sites within the crystalline API regions of the drug formulation. Next, a PM-S-RESPDOR-RFDR sequence is combined with a Back-to-Back (BaBa) sequence to elucidate local-structures and H-H proximities of the API in a dosage form. The PM-S-RESPDOR-RFDR-BaBa experiment is employed in one- (1D) and two-dimensional (2D) versions to selectively detect the H ssNMR spectrum of l-cysteine (10.6 ​wt% or 0.11 ​mg) in a commercial formulation, and compared with the spectra of neat l-cysteine recorded using a standard BaBa experiment. The 2D H double-quantum-single-quantum (DQ-SQ) spectrum of the API (l-cysteine)-detected pharmaceutical tablet is in good agreement with the 2D H DQ-SQ spectrum obtained from the pure API molecule. Furthermore, the sensitivity and robustness of the experiment is examined by selectively detecting H{N} signals in an amino acid salt, l-histidineHOHCl.

摘要

在制药行业中,对原料药 (API) 进行原子水平的表征至关重要,因为 API 对药物制剂的物理化学性质起着重要作用。然而,由于赋形剂作为主要成分和不同 API 的存在(浓度稀释,通常低于 10%负载),分析完整片剂制剂中的目标 API 并不简单。尽管固态 (ss) NMR 光谱广泛用于研究纯药物化合物中的短程有序、多晶型和拟多晶型,但复杂药物制剂的分析通常受到来自结构不同的 API 和赋形剂的重叠信号的限制。特别是,在分析药物制剂的 H ssNMR 谱时经常会遇到此类示例。虽然通过例如高磁场和快速魔角旋转 (MAS) 方法可以获得 H ssNMR 谱的高分辨率,但化合物混合物的光谱复杂性阻碍了化学位移和空间邻近性的准确确定。在这里,我们提出了一种快速 MAS (70 kHz) NMR 实验,用于从片剂制剂的严重重叠 NMR 光谱中选择性检测与 API 相关的 H 信号。通过结合 (i) 基于对称的偶极重聚 (SR4) 旋转回波饱和脉冲双共振 (RESPDOR) 与相调制 (PM) 饱和脉冲、(ii) 射频驱动重聚 (RFDR) 和 (iii) 使用 Back-to-Back (BaBa) 脉冲序列元素的双量子激发来实现光谱简化。首先,使用 PM-S-RESPDOR 序列激发 API 中与 N 核接近的 H 位点,同时抑制赋形剂的其他不需要的 H 信号。然后,通过使用 RFDR 序列进行自旋扩散过程将 H 磁化转移到 API 中的相邻 H 位点,该过程使药物制剂中 API 的结晶区域中的 H 位点极化。接下来,将 PM-S-RESPDOR-RFDR 序列与 Back-to-Back (BaBa) 序列结合使用,以阐明剂型中 API 的局部结构和 H-H 邻近性。PM-S-RESPDOR-RFDR-BaBa 实验用于一维 (1D) 和二维 (2D) 版本,以选择性检测商业制剂中 l-半胱氨酸 (10.6%wt%或 0.11mg) 的 H ssNMR 谱,并与使用标准 BaBa 实验记录的纯 l-半胱氨酸的谱进行比较。通过选择性检测氨基酸盐 l-组氨酸 HOHCl 中的 H{N}信号,对 API(l-半胱氨酸)-检测药物片剂的 2D H 双量子-单量子 (DQ-SQ) 谱进行了实验,该谱与从纯 API 分子获得的 2D H DQ-SQ 谱吻合良好。此外,通过选择性检测氨基酸盐 l-组氨酸 HOHCl 中的 H{N}信号,对 API(l-半胱氨酸)-检测药物片剂的 2D H 双量子-单量子 (DQ-SQ) 谱进行了实验,该谱与从纯 API 分子获得的 2D H DQ-SQ 谱吻合良好。此外,通过选择性检测氨基酸盐 l-组氨酸 HOHCl 中的 H{N}信号,对 API(l-半胱氨酸)-检测药物片剂的 2D H 双量子-单量子 (DQ-SQ) 谱进行了实验,该谱与从纯 API 分子获得的 2D H DQ-SQ 谱吻合良好。此外,通过选择性检测氨基酸盐 l-组氨酸 HOHCl 中的 H{N}信号,对 API(l-半胱氨酸)-检测药物片剂的 2D H 双量子-单量子 (DQ-SQ) 谱进行了实验,该谱与从纯 API 分子获得的 2D H DQ-SQ 谱吻合良好。

实验的灵敏度和稳健性通过选择性检测氨基酸盐 l-组氨酸 HOHCl 中的 H{N}信号进行了检查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验